Journal Articles
Permanent URI for this collection
Browse
Browsing Journal Articles by Department "Universiti Malaysia Perlis"
Results Per Page
Sort Options
-
PublicationA Properties of Municipal Solid Waste Incineration Fly Ash (IFA) And Cement Used in The Manufacturing of New Inventive Blended Cement( 2022-01-01)
;Izzatul Nurain Che Sang BeriZailani W.W.A.Municipal solid waste incinerator fly (IFA) ash is prone to accumulate high concentration heavy metals. Due to the increasing costs to treat remaining fly ash at the landfill, a lot of research has been done to recycle IFA. This study was focusing on the properties of IFA and cement as main raw materials in new inventive blended cement. The properties of blended cement were also being investigated. Properties of IFA and cement were examined through several test which includes density, specific gravity, X-Ray Fluorescence (XRF), Loss of Ignition (LOI) and through Toxicity Characteristic Leaching Procedure (TCLP) test. The density test and LOI test were also being done for the blended cement. From the tests for IFA and cement, it can be found that density the density of fly ash and cement that has been used for this study were found to be 0.76 g/cm3 and 3.67 g/cm3 respectively. Then, the specific gravity of fly ash and cement were 1.69 and 2.98, accordingly. XRF results shows that both materials have highest content of aluminium, silica and iron, as expected. LOI of fly ash and cement were found to be 17.33 % and 12.33 %, respectively. In terms of the leaching rates of heavy metals (Mn, Ni, Cd, Cr, Cu), only Cd leached at rate 2.39 mg/L, which is above the USEPA's regulatory level, 1.0 mg/L. 5 %, 10 % and 15 % of IFA was mixed with cement to produced blended cement. As the density of blended cement, it was found to be 1.12 g/cm3, 1.08 g/cm3 and 1.09 g/cm3 for each of 5 %, 10 % and 15 % of fly ash in blended cement.4 -
PublicationA proposed aerobic granules size development scheme for aerobic granulation process( 2015-04)
;Norhayati Abdullah ;Ali Yuzir ;Gustaf Olsson ;Myzairah Salmiati ;Mohd Fadhil Mohd Hamdzah ;Siti Aqlima Din ;Khalilah Abdul Ahmad ;Aznah Nor Khalil ;Zainura Zainon AnuarZaini NoorAerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules’ size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme. -
PublicationAdsorption and toxicity of heavy metals on activated sludge( 2010)
;Eiichi Toorisaka ;Makoto HirataTadashi HanoThe adsorption of Cu, Cd, Ni, Zn, and Cr from synthetic solutions on powdered activated carbon (PAC), activated sludge, and dried sludge were investigated under laboratory conditions to assess its ability to remove heavy metals. The adsorption efficiency increased rapidly within the first 30 min and then slowed down as it approached a steady state after 5 h of contact time. The results showed that activated sludge and PAC had a higher adsorption capacity than dried sludge. However, PAC showed a better adsorption capacity for Cu, Zn, and Ni than activated sludge. The maximum adsorption capacity, as quantified by the Langmuir parameter Q for activated sludge was 44, 30, 24, 23, and 18 mg/g for Cu, Ni, Cd, Cr, and Zn, respectively. In the case of dried sludge, the respective values of Q were 20, 13, 11, 3, and 10 mg/g. The acute toxicity of these five heavy metals to the activated sludge microorganisms was determined on the basis of the reduction in the specific oxygen uptake rate (SOUR). The results obtained from the SOUR measurements indicated a decreasing toxicity scale, Cu > Cd > Ni ' Cr > Zn on activated sludge microorganisms.12 1 -
PublicationAdsorption of diclofenac sodium using low-cost activated carbon in a fixed-bed column( 2022-12-15)
;Fadirah Fadzail ;Asih A.Y.P.Syafiuddin A.In recent years, the presence of pharmaceutical contaminants, such as diclofenac sodium (DCF) in water bodies and their potential influence on aquatic organisms gained much attention. As a result of high demand and usage by consumers, in addition to incomplete removal during wastewater treatment, pharmaceutical contaminants will end up on water surfaces. To mitigate this problem, the elimination of DCF by employing activated carbon derived from Dillenia Indica peels was evaluated. The adsorption of DCF was performed in a continuous process. The findings showed that the adsorption of DCF was favorable at a lower flow rate, greater bed height, and initial DCF concentration, with the highest removal percentage of 44.93%. To assess the characteristics of the breakthrough curve of DCF, the adsorption data were used to match three distinct adsorption models, namely, Boharts and Adam, Yoon-Nelson, and Thomas. The breakthrough results were well-fitted with these models, as the values of R2 for all models and parameters were higher than 0.88. Thus, it was concluded that the activated carbon from Dillenia Indica can effectively remove DCF from an aqueous solution.1 -
PublicationAnalysis of short time period of operation of horizontal ground heat exchangers( 2015)
;Akio MiyaraKeishi KariyaGround source heat pump (GSHP) systems have been proven to have higher efficiency compared to conventional air source heat pump systems for space heating and cooling applications. While vertical ground heat exchangers (GHE) are favorable in GSHP installation, this type of configuration requires higher capital costs as opposed to horizontal configuration. Numerical simulation has been used to accurately predict the thermal performance of GHE. In this paper, numerical analysis of thermal performance for slinky horizontal GHE loops in different orientations and operation modes is discussed. It was found that the loop orientation is not so important due to the little effect it has on thermal performance. While the mean heat exchange rate of copper loop increases 48% compared to HDPE loop, the analysis supports the common claim that heat exchange rate is predominantly limited by the thermal conductivity of the ground. With the same amount of circulation work, the mean heat exchange rate increases by 83%–162% when operated in parallel loops operations. The performance in these operations can be further optimized to 10%–14% increase when spacing between adjacent loops was provided. The spacing helps to minimize interference of heat flow that would penalize the overall thermal performance.6 6 -
PublicationAssessment of the suitability of ceramic waste in geopolymer composites: an appraisal( 2021)
;Ismail Luhar ;Salmabanu Luhar ;Marcin Nabiałek ;Andrei Victor Sandu ;Janusz Szmidla ;Anna Jurczyńska ;Rafiza Abdul Razak ;Ikmal Hakem A AzizLaila Mardiah DeramanCurrently, novel inorganic alumino-silicate materials, known as geopolymer composites, have emerged swiftly as an ecobenevolent alternative to contemporary ordinary Portland cement (OPC) building materials since they display superior physical and chemical attributes with a diverse range of possible potential applications. The said innovative geopolymer technology necessitates less energy and low carbon footprints as compared to OPC-based materials because of the incorporation of wastes and/or industrial byproducts as binders replacing OPC. The key constituents of ceramic are silica and alumina and, hence, have the potential to be employed as an aggregate to manufacture ceramic geopolymer concrete. The present manuscript presents a review of the performance of geopolymer composites incorporated with ceramic waste, concerning workability, strength, durability, and elevated resistance evaluation. -
PublicationCharacterisation and evaluation of trimesic acid derivatives as disulphide cross-linked polymers for potential colon targeted drug delivery( 2017)
;Ng, Yoke Mooi ;Ayub, Asila Dinie ;Ngalim, Siti HawaVuanghao LimDiscovery and use of biocompatible polymers offers great promise in the pharmaceutical field, particularly in drug delivery systems. Disulphide bonds, which commonly occur in peptides and proteins and have been used as drug-glutathione conjugates, are reductively cleaved in the colon. The intrinsic stability of a disulphide relative to thiol groups is determined by the redox potential of the environment. The objective of this study was to synthesise a trimesic acid-based disulphide cross-linked polymer that could potentially be used for targeted delivery to the colon. The monomer was synthesised by an amide coupling reaction between trimesic acid and (triphenylmethyl) thioethylamine using a two-step synthesis method. The s-trityl group was removed using a cocktail of trifluoroacetic acid and triethylsilane to expose the thiols in preparation for further polymerisation. The resulting polymers (P10, P15, P21, P25, and P51, generated using different molar ratios) were reduced after 1.5 h of reduction time. Scanning electron microscopy images of the polymers showed spherical, loose, or tight patterns depending on the molar ratio of polymerisation. These polymers also exhibited efficient dissolution under various gastrointestinal conditions. Of the five polymers tested, P10 and P15 appeared to be promising drug delivery vehicles for poorly soluble drugs, due to the hydrophobic nature of the polymers.5 1 -
PublicationEffect of operating temperature in the anaerobic degradation of palm oil mill effluent: Process performance, microbial community, and biokinetic evaluation( 2022-09-01)This research paper presents the thermophilic anaerobic digestion (TAD) of palm oil mill effluent (POME), which is an extension of a previously conducted mesophilic anaerobic digestion (MAD) study. An anaerobic suspended growth closed bioreactor was operated at various hydraulic retention times (HRT) between 24 and 8 days. The effect of operating temperature on the performance, microbial identification, and biokinetic coefficients was evaluated. Performance was quantified by the production of biogas and the chemical oxygen demand (COD) reduction efficiency. Biogas production in TAD (64.56 L/day) was higher than MAD (46.76 L/day). A higher COD reduction efficiency was also achieved in TAD (90.90%) compared to MAD (89.66%). Other than that, more species of methanogenic bacteria were also identified in TAD through 16S rDNA. Furthermore, the modified Monod model implemented in the biokinetic evaluation revealed that higher values of maximum substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) contributed to the better performance in TAD. The high rx,max value explains the higher COD reduction efficiency obtained in TAD. The critical retention time (θC) in TAD is also higher than MAD, making it less prone to the washout of active microbes when operating near low retention times. Additionally, TAD also achieved higher methane yield (YCH4) as opposed to MAD. The extension study concluded that the TAD of POME demonstrated improved performance in terms of biogas production and COD reduction when evaluated against the previously conducted MAD.
3 -
PublicationFly ash-based geopolymer lightweight concrete using foaming agent( 2012)
;Mohamed BnhussainRafiza Abdul RazakIn this paper, we report the results of our investigation on the possibility of producing foam concrete by using a geopolymer system. Class C fly ash was mixed with an alkaline activator solution (a mixture of sodium silicate and NaOH), and foam was added to the geopolymeric mixture to produce lightweight concrete. The NaOH solution was prepared by dilute NaOH pellets with distilled water. The reactives were mixed to produce a homogeneous mixture, which was placed into a 50 mm mold and cured at two different curing temperatures (60 °C and room temperature), for 24 hours. After the curing process, the strengths of the samples were tested on days 1, 7, and 28. The water absorption, porosity, chemical composition, microstructure, XRD and FTIR analyses were studied. The results showed that the sample which was cured at 60 °C (LW2) produced the maximum compressive strength for all tests, (11.03 MPa, 17.59 MPa, and 18.19 MPa) for days 1, 7, and 28, respectively. Also, the water absorption and porosity of LW2 were reduced by 6.78% and 1.22% after 28 days, respectively. The SEM showed that the LW2 sample had a denser matrix than LW1. This was because LW2 was heat cured, which caused the geopolymerization rate to increase, producing a denser matrix. However for LW1, microcracks were present on the surface, which reduced the compressive strength and increased water absorption and porosity.3 15 -
PublicationInfluence of leachate matrix on oxidation performance of ozonation and aops( 2022-12-15)
;Kow Su Huan ;Wikurendra E.A.Handayani D.Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.1 -
PublicationInsights into modified sequencing batch reactor for the treatment of sugarcane vinasse: role of recirculation process( 2022-12-01)Ng H.H.The application of the recirculation process in the biological wastewater treatment process was considered as an effective approach in promoting biomass retention and mixing intensity, enhancing the performance of treating wastewater. In this study, a recirculated sequencing batch reactor (R-SBR) was developed in the treatment of anaerobically digested vinasse. The comparative study of the conventional sequencing batch reactor (without recirculation process) and R-SBR was determined through the treatment performances and kinetic studies. The chemical oxygen demand and ammonium reduction of R-SBR (52.5 ± 8.0% and 31.7 ± 7.9%) were higher than the conventional sequencing batch reactor (31.8 ± 4.3% and 17.3 ± 5.3%) at the feed flow rate of 1.0 L/day. This result revealed that the enhancement of the mass transfer between activated sludge and substrate could improve the biodegradation of the R-SBR. Moreover, the effect of feed flow rate as a significant factor to achieve effective biodegradation was determined in the R-SBR system. The maximum chemical oxygen demand reduction (63.0%) and ammonium reduction (41.3%) of R-SBR were achieved at the lowest feed flow rate (1.0 L/day) from 1.0 to 5.0 L/day. The chemical oxygen demand reduction of R-SBR could be explained by using pseudo-first-order kinetics with rate constant (k1) (0.0356 day−1). The kinetic study revealed that the R-SBR achieved the most effective performance at the lowest feed flow rate. Thus, the recirculation process as a feasible process improved the treatment performance in the R-SBR system at low feed flow rate.
5 -
PublicationKinetic model discrimination on the biogas production in thermophilic co-digestion of sugarcane vinasse and water hyacinth( 2022-08-01)Eng K.M.Co-digestion between sugarcane vinasse (Vn) and water hyacinth (WH) at various mixing ratios of 0:1, 1:0, 1:3, 3:1, and 1:1 was carried out under thermophilic conditions (55 °C) for 60 days. The effect of various mixing ratios on the pH changes, soluble chemical oxygen demand (sCOD) reduction, and cumulative biogas production was investigated. The first order, modified Gompertz, and logistic function kinetic models were selected to fit the experimental data. Model discrimination was conducted through the Akaike Information Criterion (AIC). The study revealed that co-digestion shows better performance compared to the mono-digestion of both substrates. Vn:WH mixing ratio 1:1 with inoculum to substrate ratio (ISR) of 0.38 g VSinoculum/g VSsubstrate is the most favorable ratio, achieving sCOD reduction efficiency and cumulative biogas production of 71.6% and 1229 mL, respectively. Model selection through AIC revealed that ratio 1:1 was best fitted to the logistic function kinetic model (R2 = 0.9897) with Ym and K values of 1232 mL and 31 mL/day, respectively.
2 -
PublicationMechanical properties of Fly Ash-Based geopolymer concrete incorporation Nylon66 Fiber( 2022)
;Muhd Hafizuddin Yazid ;Muhammad Shazril I. Ibrahim ;Rafiza Abdul Razak ;Dumitru Doru Burduhos Nergis ;Diana Petronela Burduhos Nergis ;Omrane BenjeddouKhanh-Son NguyenThis study was carried out to investigate the effect of the diamond-shaped Interlocking Chain Plastic Bead (ICPB) on fiber-reinforced fly ash-based geopolymer concrete. In this study, geopolymer concrete was produced using fly ash, NaOH, silicate, aggregate, and nylon66 fibers. Characterization of fly ash-based geopolymers (FGP) and fly ash-based geopolymer concrete (FRGPC) included chemical composition via XRF, functional group analysis via FTIR, compressive strength determination, flexural strength, density, slump test, and water absorption. The percentage of fiber volume added to FRGPC and FGP varied from 0% to 0.5%, and 1.5% to 2.0%. From the results obtained, it was found that ICBP fiber led to a negative result for FGP at 28 days but showed a better performance in FRGPC reinforced fiber at 28 and 90 days compared to plain geopolymer concrete. Meanwhile, NFRPGC showed that the optimum result was obtained with 0.5% of fiber addition due to the compressive strength performance at 28 days and 90 days, which were 67.7 MPa and 970.13 MPa, respectively. Similar results were observed for flexural strength, where 0.5% fiber addition resulted in the highest strength at 28 and 90 days (4.43 MPa and 4.99 MPa, respectively), and the strength performance began to decline after 0.5% fiber addition. According to the results of the slump test, an increase in fiber addition decreases the workability of geopolymer concrete. Density and water absorption, however, increase proportionally with the amount of fiber added. Therefore, diamond-shaped ICPB fiber in geopolymer concrete exhibits superior compressive and flexural strength.11 2 -
PublicationMetakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+( 2022)
;Pilomeena Arokiasamy ;Mohd Remy Rozainy Mohd Arif Zainol ;Marwan Kheimi ;Jitrin Chaiprapa ;Andrei Victor Sandu ;Petrica VizureanuActivated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu2+) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu2+ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu2+ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu2+ about 99.62 % and 99.37 % at 25 %:75 % of MK/S1 and 25 %:75 % of MK/S3 respectively compared to pure MK based geopolymer with 98.56 %. The best S/2 8 -
PublicationMicroplastics and nanoplastics: Recent literature studies and patents on their removal from aqueous environment( 2022-03-01)
;Muhammad Adli HanifJalil A.A.The presence of microplastics (MP) and nanoplastics (NP) in the environment poses significant hazards towards microorganisms, humans, animals and plants. This paper is focused on recent literature studies and patents discussing the removal process of these plastic pollutants. Microplastics and nanoplastics can be quantified by counting, weighing, absorbance and turbidity and can be further analyzed using scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, surface-enhanced Raman spectroscopy and Raman tweezers. Mitigation methods reported are categorized depending on the removal characteristics: (i) Filtration and separation method: Filtration and separation, electrospun nanofiber membrane, constructed wetlands; (ii) Capture and surface attachment method: coagulation, flocculation and sedimentation (CFS), electrocoagulation, adsorption, magnetization, micromachines, superhydrophobic materials and microorganism aggregation; and (iii) Degradation method: photocatalytic degradation, microorganism degradation and thermal degradation; where removal efficiency between 58 and 100% were reported. As these methods are significantly distinctive, the parameters which affect the MP/NP removal performance e.g., pH, type of plastics, presence of interfering chemicals or ions, surface charges etc. are also discussed. 42 granted international patents related to microplastics and nanoplastics removal are also reviewed where the majority of these patents are focused on separation or filtration devices. These devices are efficient for microplastics up to 20 μm but may be ineffective for nanoplastics or fibrous plastics. Several patents were found to focus on methods similar to literature studies e.g., magnetization, CFS, biofilm and microorganism aggregation; with the addition of another method: thermal degradation.1 -
PublicationOptimization of NaOH molarity, LUSI mud/alkaline activator, and Na₂SiO₃/NaOH ratio to produce lightweight aggregate-based geopolymer( 2015)
;Djwantoro HardjitoThis paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na₂SiO₃/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.1 15 -
PublicationPhotocatalytic degradation of sugarcane vinasse using ZnO photocatalyst: operating parameters, kinetic studies, phytotoxicity assessments, and reusability( 2021)Kim-Mun EngPhotocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobi‑ cally digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efciency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efciency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that afect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV–Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efciency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was efective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.
28 88 -
PublicationPhotocatalytic Degradation of Sugarcane Vinasse Using ZnO Photocatalyst: Operating Parameters, Kinetic Studies, Phytotoxicity Assessments, and Reusability( 2022-02-01)Eng K.M.Abstract: Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV–Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process. Graphical abstract: [Figure not available: see fulltext.].
1 3 -
PublicationPrediction of pressuremeter modulus (E M) using GMDH neural network: a case study of Kenny Hill Formation( 2020-05-01)
;Ismail M.A.M. ;Govindasamy D.Leong F.C.P.Soil investigation (SI) work is a process of collecting subsurface ground profile information in evaluating soil engineering properties for a construction project. The standard penetration method (SPT) is widely accepted worldwide as a feasible and relatively inexpensive method over other field tests. Pressuremeter test (PMT), on the other hand, is costly and more popular in situ method in interpreting soil deformation behavior. Considering SPT is available in almost site investigation works for all sizes of project, it was tempting to establish the correlation between SPT and PMT results, specifically in local geologic setting. The study was conducted in Kenny Hill Formation, Kuala Lumpur, Malaysia. The correlation established in this study is between pressuremeter modulus (EM) and SPT blow count (N60). In addition to in situ methods, the physical properties of soil extruded from boreholes were tested in geotechnical laboratories to determine soil properties, such as particle size distribution, liquid limit, and plastic limit. These parameters need to be considered during prediction of EM. Group method of data handling (GMDH) neural network has been used to achieve this objective. The mean absolute error (MAE) results show that the GMDH neural networks produce values of 8.04 and 8.59 for training and testing. The root mean square error (RMSE) yields 10.61 and 10.84 for training and testing, respectively. Further, the results of the coefficients of determination (R2) are 0.794 and 0.726 for training and testing demonstrates a good correlation exists between predicted and measured values. Based on the GMDH results, N60, sand, and clay are required input variables for determination of EM.3 3 -
PublicationPromoting a well-dispersion of MoO3 nanoparticles on fibrous silica catalyst via one-pot synthesis for enhanced photoredox environmental pollutants efficiency( 2022-12-01)
;Izzudin N.M. ;Jalil A.A. ;Ali M.W. ;Aziz F.F.A. ;Azami M.S. ;Hassan N.S. ;Fauzi A.A. ;Saravanan R.Hassim M.H.The coexistence of pharmaceutical compounds and heavy metals in the aquatic environment has resulted in complications in the treatment process and thus, causing uproar among the citizens. The radical-based photocatalysis technology has aroused as an excellent method to eliminate both heavy metal and pharmaceutical compounds in the water. Herein, reported the utilization of the microemulsion technique for the preparation of nanoporous fibrous silica-molybdenum oxide (FSMo) towards simultaneous photocatalytic abatement of hexavalent chromium (Cr(VI)) and tetracycline (TC). The FESEM analysis showed the spherical morphology of the FSMo catalyst with dendrimeric silica fiber. The synthesized FSMo catalyst exhibited narrowed bandgap, high crystallinity, and well Mo element dispersion for enhanced photo-redox of Cr(VI) and TC. Remarkably, simultaneous remediation of the Cr(VI) and TC over FSMo demonstrated superior photocatalytic efficiency, 69% and 75%, respectively, than in the individual system, possibly due to the effective separation of photoinduced charges. The introduction of the Mo element to the silica framework via microemulsion technique demonstrated better dispersion of Mo compared to the incipient wetness impregnation method and thus, yielded higher photocatalytic activity towards simultaneous removal of TC and Cr(VI). Besides, quenching experiments revealed the electrons and holes as the active species that play a dominant role in the simultaneous photo-redox of Cr(VI) and TC. Lastly, the FSMo catalyst demonstrated high stability after four continuous cycles of simultaneous photocatalysis reactions, implying its potential as a suitable material for practical wastewater treatments.1