Options
Zarina Yahya
Preferred name
Zarina Yahya
Official Name
Zarina, Yahya
Alternative Name
Yahya, Zarina
Zarina, Y.
Zarina, Yahya
Main Affiliation
Scopus Author ID
51162069600
Researcher ID
DXZ-6436-2022
Now showing
1 - 10 of 44
-
PublicationEffect of Rice Straw Ash (RSA) as partially replacement of cement toward fire resistance of self-compacting concrete( 2022)
;Yi Qin Chin ;Sebastian Garus ;Marcin Nabiałek ;Warid Wazien Ahmad Zailani ;Khairil Azman Masri ;Andrei Victor SanduAgata ŚliwaMalaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3 -
PublicationA Review on the Concrete Durability Exposed to Different Wet-Dry Cycles Conditions( 2024-04-19)Concrete structure is prone to corrosion and weathering when built near marine environment. The greater damage on the concrete can be observed when it involves wet-dry action such as tidal waves combine with the existence of aggressive ions such as sulphate and chloride in seawater. The objective of this study is to review on the mechanism of sulphate, chloride attack toward concrete, parameters that influence the wet-dry action and identify the overview of research trends. The mechanism of sulphate and chloride attack during wet-dry action had reciprocal inhibiting effect on concrete and the penetration level for each ion also vary. The physical and mechanical damage of concrete exposed to wet-dry action also influence by wet-dry ratio, number of cycles and temperature during drying process. The main compound detected during exposure period are Friedel salt, ettringite, mirabilite and thenardite which can cause concrete delamination and spalling.
-
PublicationDevelopment of High Strength Alluvial Brick by Incorporative of Coconut Fibre( 2024-04-19)
;Sagaran R. ;Junaidi S.The new properties of alluvial brick can be created by addition to the coconut fibre. An analysis on compressive strength and water absorption percentage of alluvial brick and coconut fibre alluvial brick are presented in this research. There are four main different operations are involved in the process of manufacturing of alluvial bricks such as preparation of alluvial clay and coconut fibre, moulding of bricks, pre-drying of bricks and burning of bricks at 500°C, 600°C and 700°C. The results showed that the alluvial soil brick (without coconut fibre) burnt at 600°C exhibits the highest compressive strength of 17.33MPa and water absorption rate is 5.56% after soaked 24 hours in water. By using 600°C as the optimum temperature, alluvial bricks incorporating of coconut fibre are burnt. The highest value of compressive strength of coconut fibre alluvial brick is 16.57MPa and the water absorption is 11.11%. The outcomes of this research proved that the pure alluvial soil brick which not mixed with any add mixtures can be used in the construction project and it can be considered as a new type of brick in construction material. The coconut fibre alluvial brick also has fulfil the requirements to contribute to sustainable development as coconut fibre alluvial brick is made use of waste coconut fibre that environmental friendly and at the same time, it could decreases the waste material disposal. -
PublicationProperties of Blended Alkaline System Geopolymer-A Review( 2020-03-18)
;Ahmad Zaidi F.H.Saufi A.S.Geopolymers are inorganic material that comprise of silicon(Si) and aluminium(Al) bonded by oxygen atom to form a polymer network. The binder material used for geopolymer such as fly ash and blast furnace are mostly the industrial waste or by-products containing high content of silica and aluminium which acted as precursor for geopolymerization. The raw material plays an important role in the formation of geopolymer for each material may result in different properties of geopolymer. To improve the performance of these binders, numerous studies have been focused on the production of mixes based on blends of reactive precursors. The blends usually involve a Ca-rich precursor such as granulated blast furnace slag (GGBS), and an aluminosilicate source such as metakaolin or low calcium fly ash, to promote the stable coexistence of calcium silicate hydrate (C-S-H) gels formed from the activation of the GGBS and the geopolymer gel (N-A-S-H) produced from the activation of the aluminosilicate. Thus, this paper is intended to review the properties of different type of mixes of blended alkaline system. -
PublicationRice husk (RH) as additive in fly ash based geopolymer mortar( 2017-09-26)
;Mohd Azrin Adzhar RahimArmia NasriIn recent year, the Ordinary Portland Cement (OPC) concrete is vastly used as main binder in construction industry which lead to depletion of natural resources in order to manufacture large amount of OPC. Nevertheless, with the introduction of geopolymer as an alternative binder which is more environmental friendly due to less emission of carbon dioxide (CO2) and utilized waste materials can overcome the problems. Rice husk (RH) is an agricultural residue which can be found easily in large quantity due to production of paddy in Malaysia and it's usually disposed in landfill. This paper investigated the effect of rice husk (RH) content on the strength development of fly ash based geopolymer mortar. The fly ash is replaced with RH by 0%, 5%, 10%, 15% and 20% where the sodium silicate and sodium hydroxide was used as alkaline activator. A total of 45 cubes were casted and their compressive strength, density and water absorption were evaluated at 1, 3, and 7 days. The result showed compressive strength decreased when the percentage of RH increased. At 5% replacement of RH, the maximum strength of 17.1MPa was recorded at day 7. The geopolymer has lowest rate of water absorption (1.69%) at 20% replacement of RH. The density of the sample can be classified as lightweight geopolymer concrete. -
PublicationDurability of geopolymer lightweight concrete infilled LECA in seawater exposure( 2017-11-23)Hamid M.This paper describes a development of lightweight concrete using lightweight expanded clay aggregate (LECA) in fly ash (FA) based geopolymer immersed in seawater. The objective of this research is to compare the performance of geopolymer concrete (GPC) with ordinary Portland cement (OPC) concrete infilled lightweight expanded clay aggregate (LECA) in seawater exposure. Geopolymer concrete is produced by using alkaline activator to activate the raw material, FA. The highest compressive strength of this study is 42.0 MPa at 28 days and 49.8 MPa at 60 days. The density for this concrete is in the range of 1580 kg/m3 to 1660 kg/m3. The result for water absorption is in the range of 6.82% to 14.72%. However, the test results of weight loss is in the range between 0.30% to 0.43%.
-
PublicationProperties and morphology of fly ash based Alkali Activated Material (AAM) paste under steam curing condition( 2022)
;Sh. Nur Syamimi Sy. IzmanRosnita MohamedThis paper details the properties, microstructures, and morphologies of the fly ash-based alkali-activated material (AAM), also known as geopolymers, under various steam curing temperatures. The steam curing temperature result in subsequent high strengths relative to average curing temperatures. However, detailed studies involving the use of steam curing for AAM remain scarce. The AAM paste was prepared by mixing fly ash with an alkali activator consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). The sample was steam cured at 50°C, 60°C, 70°C, and 80°C, and the fresh paste was tested for its setting time. The sample also prepared for compressive strength, density, and water absorption testings. It was observed that the fastest time for the fly ash geopolymer to start hardening was at 80°C at only 10 minutes due to the elevated temperature quickening the hydration of the paste. The compressive strength of the AAM increased with increasing curing time from 3 days to 28 days. The AAM’s highest compressive strength was 61 MPa when the sample was steam cured at 50°C for 28 days. The density of AAM was determined to be ~2122 2187 kg/m3 , while its water absorption was ~6.72-8.82%. The phase analyses showed the presence of quartz, srebrodolskite, fayalite, and hematite, which indirectly confirms Fe and Ca’s role in the hydration of AAM. The morphology of AAM steam-cured at 50°C showed small amounts of unreacted fly ash and a denser matrix, which resulted in high compressive strength. -
PublicationAsas Geopolimer Teori & Amali(Penerbit UniMAP, 2013)Mohd Izzat, AhmadBuku Asas Geopolimer: Teori dan Amali ialah sebuah buku yang membincangkan beberapa perkara asas yang penting mengenai geopolimer. Ia meliputi aspek-aspek seperti; Sejarah geopolimer Pengenalan kepada geopolimer Perbandingan konkrit geopolimer dengan konkrit biasa Bahan mentah dalam geopolimer Tindak balas kimia Kaedah pemprosesan Kualiti konkrit geopolimer Penyelidikan geopolimer masa kini Penulisan buku ini menumpukan kepada teori asas, proses dan pencirian geopolimer yang memberi pengetahuan kepada pembaca mengenai teori dan praktikal berasaskan hasil penyelidikan yang dibuat penyelidik. Tiga perkara utama yang dibincangkan di dalam buku ini ialah bahan mentah (larutan pengaktif alkali), tindak balas kimia yang memainkan peranan dalam proses pengeopolimeran dan pemprosesan geopolimer. Buku Asas Geopolimer: Teori dan Amali ini juga adalah buku pertama yang dihasilkan dalam Bahasa Melayu.
-
PublicationSurface resistivity and ultrasonic pulse velocity evaluation of reinforced opc concrete and reinforced geopolymer concrete in marine environment( 2021-01-01)
;Ariffin N.F.Chong Y.C.The concrete structures that are built along the seaside often suffer from reduced service life due to inadequate durability against deterioration. This research reports the findings of concrete resistivity and quality using two Non-Destructive Testing (NDT) measures applied to Reinforced Geopolymer and Ordinary Portland Cement (OPC) concrete in the marine environment. In addition, the relationship between Reinforced Geopolymer and Reinforced OPC concrete was statistically discussed in-terms of strength and direction. The testing was carried out using a Proceeq Resipod Wenner 4-probe to measure Surface Resistivity (SR) and Ultrasonic Pulse Velocity (UPV), respectively. The testings were carried out on beam shaped samples of OPC and Geopolymer concrete that were immersed in seawater over a period of 90 days with similar curing condition. It was found from the present investigation that the maximum SR and maximum UPV values acquired for both the Reinforced OPC and Reinforced Geopolymer concrete are 2.73 kΩcm and 2.07 kΩcm, as well as 4.18 km/s and 4.05 km/s, respectively. It is apparent from the study that both concrete is comparable in terms of quality and surface resistivity.1 -
PublicationArticle the effects of various concentrations of naoh on the inter-particle gelation of a fly ash geopolymer aggregate( 2021-03-01)
;Sochacki W. ;Błoch K.Fansuri H.Aggregates can be categorized into natural and artificial aggregates. Preserving natural resources is crucial to ensuring the constant supply of natural aggregates. In order to preserve these natural resources, the production of artificial aggregates is beginning to gain the attention of researchers worldwide. One of the methods involves using geopolymer technology. On this basis, this current research focuses on the inter-particle effect on the properties of fly ash geopolymer aggregates with different molarities of sodium hydroxide (NaOH). The effects of synthesis parameters (6, 8, 10, 12, and 14 M) on the mechanical and microstructural properties of the fly ash geopolymer aggregate were studied. The fly ash geopolymer aggregate was palletized manually by using a hand to form a sphere-shaped aggregate where the ratio of NaOH/Na2SiO3 used was constant at 2.5. The results indicated that the NaOH molarity has a significant effect on the impact strength of a fly ash geopolymer aggregate. The highest aggregate impact value (AIV) was obtained for samples with 6 M NaOH molarity (26.95%), indicating the lowest strength among other molarities studied and the lowest density of 2150 kg/m3 . The low concentration of sodium hydroxide in the alkali activator solution resulted in the dissolution of fly ash being limited; thus, the inter-particle volume cannot be fully filled by the precipitated gels.1