Now showing 1 - 5 of 5
  • Publication
    Adsorption and toxicity of heavy metals on activated sludge
    ( 2010) ;
    Eiichi Toorisaka
    ;
    Makoto Hirata
    ;
    Tadashi Hano
    The adsorption of Cu, Cd, Ni, Zn, and Cr from synthetic solutions on powdered activated carbon (PAC), activated sludge, and dried sludge were investigated under laboratory conditions to assess its ability to remove heavy metals. The adsorption efficiency increased rapidly within the first 30 min and then slowed down as it approached a steady state after 5 h of contact time. The results showed that activated sludge and PAC had a higher adsorption capacity than dried sludge. However, PAC showed a better adsorption capacity for Cu, Zn, and Ni than activated sludge. The maximum adsorption capacity, as quantified by the Langmuir parameter Q for activated sludge was 44, 30, 24, 23, and 18 mg/g for Cu, Ni, Cd, Cr, and Zn, respectively. In the case of dried sludge, the respective values of Q were 20, 13, 11, 3, and 10 mg/g. The acute toxicity of these five heavy metals to the activated sludge microorganisms was determined on the basis of the reduction in the specific oxygen uptake rate (SOUR). The results obtained from the SOUR measurements indicated a decreasing toxicity scale, Cu > Cd > Ni ' Cr > Zn on activated sludge microorganisms.
  • Publication
    Photocatalytic degradation of sugarcane vinasse using ZnO photocatalyst: operating parameters, kinetic studies, phytotoxicity assessments, and reusability
    Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobi‑ cally digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efciency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efciency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that afect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV–Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efciency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was efective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.
  • Publication
    Treatment of O3 with Na2S2O8 by ANOVA Interpretation towards degradation of azo dye
    Advanced oxidation processes (AOPs) especially ozonation method is widely studied in the wastewater treatmentfield. In this study, it highlighted about threemainenvironmental issues in the world such as1) proposing a method to overcome uncontrollable effluents from textile industriesby using syntheticdyes; 2)creating an improvementof previous conventional method; 3) reduced process time by using statistical approach.To address with this issue, analysis of variance (ANOVA)from Response Surface Methodology (RSM)to study the performance of O3with the help of persulfate (Na2S2O8) for treating one of azo dyes which is Reactive Green 19.This is due to there isvery limited work done by statistical analysis on this study. Hence, ANOVA data would proposestatistical models tailored to the data in 2D and 3D contour plots by knowing the three influenced parameterswhich is pH(6 to 10),persulfate concentration (30to 70mM) and contact time (4 to 20 min). Through the analysis, the result can be concluded that improvement of ozonation process with persulfate (Na2S2O8) werestatistically significant after allinteractive effectsgave a positive feedback towards responses.The obtained optimum conditions included a persulfate concentration (49mM), initial pH (8.89) and contact time (18 min) with fixed initial concentration 100mg/L. The experimental results were corresponded well with predicted models colour removal rates which is 99%.
  • Publication
    Study of O3/S2O82- Advanced Oxidation Processes (AOPs) for removal of dye industrial effluents
    This research was carried out to study the efficiency of O3/S2O82- system in removal of Reactive Red 120 (RR120) dye sample. Different operating parameter such as pH, initial dye concentration and persulfate dosage were studied to evaluate the performance on removing colour and COD. The removal of colour and COD achieved higher efficiency at pH 7, 100 mg/L of initial dye concentration and persulfate dosage of 5 g S2O82-/1 g RR120. O3/S2O82- with the most effective conditions experienced effective decolourization and degradation of organic pollutants than O3 only. Furthermore, it achieved faster breakdown of azo bond and aromatic groups than O3 after treatment as observed with UV-Vis absorption spectra. The FT-IR analysis obtained new absorption peak that represents alkenes after 20 min of O3 treatment whereas mostly of the absorption bands of O3/S2O82- flattened.
  • Publication
    Preliminary screening oxidative degradation methyl orange using ozone/ persulfate
    ( 2018)
    Nur Aqilah Razali
    ;
    ; ; ; ;
    Siti Nasuha Sabri
    ;
    Su Huan Kow
    The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.