Options
Wong Yee Shian
Preferred name
Wong Yee Shian
Official Name
Wong, Yee Shian
Alternative Name
Wong, Yee-Shian
Wong, Y. S.
Wong, Yee Shian
Yee-Shian, Wong
Y S Wong
Main Affiliation
Scopus Author ID
56004092100
Researcher ID
M-6006-2015
Now showing
1 - 10 of 49
-
PublicationThe reaction of wastewater treatment and power generation of single chamber microbial fuel cell against substrate concentration and anode distributions( 2020-12-01)
;Tan S.M. ;Thung W.E.Teoh T.P.This study demonstrated the effectiveness of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment concurrently with bioelectricity generation. The objectives of this study were to examine the effect of influent substrate concentration (0.405 g/L, 0.810 g/L, 1.215 g/L, 1.620 g/L), anode distributions (11 cm, 17 cm, 23 cm) and surface morphologies for biofilm formation on the performance of wastewater treatment and power generation. The optimum performance was obtained with substrate concentration of 0.810 g/L. The COD removal efficiency, output voltage, internal resistance, power density and current density obtained were 84.64%, 610 mV, 200 Ω, 162.59 mW/m2 and 468.74 mA/m2, respectively. The Coulombic Efficiency (CE), Normalized Energy Recovery (NERS and NERv) were 1.03%, 789.38 kWh/kg COD and 22.56 kWh/m3, respectively. The results also indicate that the output voltage and power generation obtained in a continuous up-flow MFC were higher with A3 (23 cm), which is of larger electrodes spacing followed by A2 (17 cm) and A1 (11 cm) caused by the enrichment of anaerobic microbial population at A1. -
PublicationEnhanced photodegradation of phenol by ZnO nanoparticles synthesized through sol-gel method( 2017-12-01)
;Nik Noor Athirah Nik Yusoff ;Wan Fadhilah KhalikFahmi RidzwanZinc oxide (ZnO) utilization in advanced oxidation process (AOP) via solar-photocatalytic process was a promising method for alternative treating wastewater containing phenol. The ZnO photocatalyst semiconductor was synthesized by sol-gel method. The morphology of the ZnO nanostructures was observed by using scanning electron microscope (SEM) and the crystallite phase of the ZnO was confirmed by x-ray diffraction (XRD). The objective of this study was to synthesis ZnO nanoparticles through a sol-gel method for application as a photocatalyst in the photodegradation of phenol under solar light irradiation. The photodegradation rate of phenol increased with the increasing of ZnO loading from 0.2 until 1.0 g. Only 2 h were required for synthesized ZnO to fully degrade the phenol. The synthesized ZnO are capable to totally degrade high initial concentration up until 45 mg L-1 within 6 h of reaction time. The photodegradation of phenol by ZnO are most favoured under the acidic condition (pH3) where the 100% removal achieved after 2 h of reaction. The mineralization of phenol was monitored through chemical oxygen demand (COD) reduction and 92.6% or removal was achieved. This study distinctly utilized natural sunlight as the sole sources of irradiation which safe, inexpensive; to initiate the photocatalyst for degradation of phenol. -
PublicationSynergistic Effect Between Iron and Food/Microorganism (F/M) Ratio in Biological Wastewater Treatment( 2022-01-01)
;Subramaniam L.S.Siripatana C.Biological wastewater treatment is mainly dependent on the actions of microorganisms that can be used to treat wastewater. Microorganisms will start to stick together when they degrade the organic matter in wastewater for food and flocculate to settle the pollutants. This study aimed to investigate the effect of food to microorganism (F/M) ratio and iron in a biological process using aerobic treatment. For this purpose, four aerobic tanks (A, B, C, D) were set up using activated sludge as the seed sludge, air pump as air diffuser to provide oxygen to the system, and three litres of synthetic medium as carbon source for each tank. A specific amount of iron (II) sulfate was added into tanks B, C, and D with the weight of 3 g, 6 g, and 9 g, respectively. Tank A act as a control, and no iron dosage was added. The F/M ratio for tanks A, B, C, and D were 0.8, 0.5, 0.4, and 0.3 mg BOD/mg MLVSS, respectively. The aerobic tanks were operated for 40 days in sequential batch mode and sampling was collected four times per week to observe the COD and MLVSS. This study has found that Tank D shows the best performance compared to all tanks with 84.71% COD removal efficiency and a fivefold increment of microorganism growth rate. These findings suggest that a relationship exists between the iron and F/M ratio to enhance the aerobic treatment process. -
PublicationEffects of magnesium ions in microbial cells adhesion of attached growth system for the enhancement of biogas production( 2020-01-01)Kiong, Yiek WeeThis research aims to improve the biogas production by employing cell immobilisation technique under thermophilic conditions. The thermophilic fermentative biogas production was carried out by immobilising the anaerobic sludge obtained from palm oil mill treatment plant on granular activated carbon (GAC) in repeated batch mode. Different concentration of magnesium ions (Mg2+) (0.25, 0.5, 0.75, 1.0 and 1.5 g/l) on biogas production was investigated at 60°C with an initial sucrose concentration of 5 g/l as feedstock. The effect of Mg2+supplementation at the initial stage of immobilisation process is important to increase the formation of biofilm in the attached growth system. This study had found that Mg2+could enhance the biogas production capacity with optimum Mg2+concentration of 0.75 g/l.
-
PublicationBiodegradation improvement of bioinspired crosslinked and noncrosslinked polyvinyl alcohol nanocomposites with cellulose nanocrystals extracted from rice straw through natural soil burial exposure( 2022-10-01)
;Chin K.M.Tan W.K.Polyvinyl alcohol with different cellulose nanocrystals (CNC) content extracted from rice straw were prepared by using solution casting method and their biodegradability in natural soil burial were studied. Ethanedioic acid (EA) was introduced as a crosslinker. The synthesized noncrosslinked and crosslinked PVOH/CNC nanocomposites films and their biodegradation were characterized with Fourier transform infrared spectroscopy (FTIR), tensile test, weight loss, Field Emission Scanning Electron Microscopy (FESEM), differential scanning calorimetry (DSC). The changes in chemical properties before and after biodegradation were confirmed through FTIR. Tensile test revealed that the tensile strength and elongation at break reduced as time of soil burial increases. Morphological study showed the extent of surface deterioration before and after soil burial, where the addition of CNC displayed greater deterioration. Melting temperature and crystallinity increased with addition of CNC but decreased after crosslinking. However, melting temperature and crystallinity of all nanocomposites increased after biodegradation. PVOH degrading bacteria were isolated and identified to be Bacillus cereus strain CCM 2010 and Bacillus cereus strain ATCC 14579. Biodegradation of the bionanocomposites were concluded to be in the following decreasing order: PVOH/CNC > PVOH/EA/CNC > PVOH > PVOH/EA. -
PublicationIntegrated photocatalytic and sequencing batch reactor (SBR) treatment system for degradation of phenol( 2017-04-06)
;Nik Noor Athirah Nik Yusoff ;Wan Fadhilah Wan Mohd KhalikLee Sin LiThis study will examine the efficiency of the simultaneous photocatalytic and biodegradation process in the same treatment reactor. The sequencing batch reactor or also known as SBR is an effective wastewater treatment method that has been applied widely. SBR system has become an alternative method for industrial wastewater treatment with high concentration of chemical oxygen demand (COD), and phenolic compound. In order for the photocatalytic process to occur, ZnO nanoparticles immobilized onto sponge were introduced to the reactor. It was observed that the COD value were decreased, indicated that the simultaneous biodegradation and photodegradation process in functional. The effect of ZnO nanoparticles on the production and composition of extracellular polymeric substances (EPS) and the physiochemical stability of activated sludge in hybrid growth type SBR were monitored. The percentages of removal are varied with different concentration of ZnO nanoparticles. The highest COD removal recorded is 31.5% with concentration of ZnO 0.6 mg/L. With the present of the ZnO nanoparticles, the degradation of phenol was relatively better than combination of biological of photlysis and biological. -
PublicationInfluence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process( 2017-10-01)
;Noradiba Nordin ;Sin Li Lee ;Oon Yoong SinOon Yoong LingA novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed. -
PublicationBiohydrogen production from palm oil mill effluent with Moringa Oleifera seeds as support carrier in attached growth system( 2020-06-10)
;Hamid W.Z.W.A.Malek M.A.Biohydrogen production by dark fermentation is one of the attracting alternatives for renewable energy in worldwide. By employing immobilized cells, hydrogen production and cell density could be improved. This study aimed to investigate the efficiency of Moringa Oleifera Seeds (MOS) immobilized cells in enhancing the biohydrogen production using repeated batch fermentation under mesophilic condition, 37°C. The efficiency of MOS as support carrier, effect of the initial pH (5.0-7.0) and performance of raw and diluted Palm Oil Mill Effluent (POME) using MOS immobilized cells were investigated using anaerobic sludge as inoculums. The cumulative hydrogen production results were fitted into a modified Gompertz equation to find the maximum hydrogen production. MOS immobilized cells was more efficient in producing hydrogen compare to suspended cells (without MOS). The optimal pH obtained using MOS immobilized cells was found to be at pH 6 using raw POME with the maximum hydrogen production (Hm) of 122 mL, the maximum hydrogen production rate (Rm) of 39.0 mL/h, and 560 ppm of hydrogen concentration. -
PublicationIntermolecular degradation of aromatic compound and its derivatives via combined sequential and hybridized process( 2023-03-01)
;Lau Y.Y. ;Teng T.T.Eng K.M.The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation–flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation–flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography–mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet–visible spectrophotometry (GC–MS, FTIR and UV–Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments. Graphical abstract: [Figure not available: see fulltext.]. -
PublicationPlastics in Water Treatment( 2022-01-01)Ismail H.Water is essential for many people around the world and needs to be conserved. Recently water shortages are becoming severe and urgent issues to be addressed due to the global population growth coupled with rapid economic developments. Water is considered contaminated when the presence of elevated concentrations of substances in water exceeds the prescribed limits. More efficient water treatments need to be developed to address the worsening clean water shortage. Water treatment facilities made from plastic materials proven to offer more advantages compared to alternative materials. Their unique properties such as lightweight, strength, chemical and corrosion resistance, weather and fire resistance, easy and long-lasting installations contribute to the excellent applications of the water treatment system. Plastic provides many solutions for ensuring the sustainability of water. The choice of plastic types of materials depends on their specific applications. In this article, we introduce different types of plastic and its advantages. The plastic applications in water treatments were also discussed in different fields of human activities such as in water and sewage treatments, irrigation and agriculture, potable water production, aquaculture and ultra-pure water production.