Now showing 1 - 10 of 24
  • Publication
    Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5
    ( 2017-01-01)
    Noradiba Nordin
    ;
    ; ; ; ;
    Lee Sin Li
    ;
    Oon Yoong Sin
    ;
    Oon Yoong Ling
    A novel hybrid system composed of a photocatalytic fuel cell (PFC) and Fenton reactor was developed with the aim to degrade the azo dye Reactive Black 5 (RB5) and generate electricity. Compared to previously established system of bioelectro-Fenton system, microbial fuel cell (MFC) system has significant challenge in the development and operation system. Therefore, PFC is used instead of MFC to generate electrons for the Fenton system. The effect of azo dye (RB5) on each PFC and Fenton reactor was investigated. The experimental results showed that maximum power output was achieved in the absence of dye in the Fenton reactor of this hybrid system. Furthermore, higher degradation efficiency of RB5 could also be observed in the PFC reactor in this hybrid system.
  • Publication
    Assessment of heavy metal pollution in sediments and in Phragmites Australis from ArgeÅŸ River
    ( 2022-01-01)
    Marcu, Ecaterina
    ;
    Deák, György
    ;
    Ciobotaru Irina-Elena
    ;
    Burlacu, Iasmina-Florina
    ;
    Tociu, Carmen
    ;
    There are several species of macrophyte which have the ability to absorb heavy metals from water and, therefore, are used to retain and remove them. In the present paper, the concentrations of heavy metals (Zn, Cu, Ni, Cd, Pb and Cr) were investigated in sediment samples from the ArgeÈ™ River and their potential transfer from sediments to Phragmites australis was evaluated. The extent of sediment pollution with heavy metals and the potential risk to the aquatic environment were estimated based on the following indexes: bioaccumulation, geoaccumulation, ecological risk, translocation, contamination, etc. The metals concentrations in the analyzed sediments were, generally, below the limits of national legislation.
      8
  • Publication
    Effect of ozonation on COD fractionation of wastewater from poultry processing industry
    The objectives of this study were to evaluate the effect of ozonation on the solubility and biodegradability of wastewater from poultry processing industry. In addition, the wastewater also characterized based on the COD fractionation. The wastewater sample used was collected from Advance Chicken Processing (M) Sdn. Bhd., Perlis, Malaysia. Ozonation process was carried out in a semi-batch glass reactor which has a 2 L volume. The COD fractionation of poultry wastewater indicated that non-biodegradable COD is predominant compare to other fractions. However, the wastewater is containing higher percentage biodegradable COD comprehensively. It is expected that ozonation treatment would transform both particulate and soluble non-biodegradable COD towards biodegradable constituent that easily remove by biodegradation. The removal of COD was significant at ozonation duration up to 5 min. However, COD removal efficiency was only increased slightly with the increased of the ozonation duration after 5 min. This may be due to the fact that ozonation for long time would possibly producing constituent that inhibit ozone dissociation.
      3  19
  • Publication
    Reactive Green 19 degradation using O3/S2 O8(2-) process: Intermediates and proposed degradation pathway
    ( 2022-01-01)
    Mohd Razali N.A.
    ;
    ; ; ; ;
    Siti Nasuha Sabri
    ;
    Kow Su Huan
    ;
    Safya Abdul Malik
    The massive drawbacks of conventional wastewater treatment have led to a demand investigation about new advanced wastewater treatment technology. The issue can be addressed via advanced oxidation processes (AOPs) as witnessed recently. Therefore, the objective of this study was to investigate the performance of ozone/persulfate ((Formula presented.)) process to assess its use as potential degradation of diazo dye which is Reactive Green 19 (RG19). In this work, efficiency, color, and COD removal were investigated over a range of initial pH, persulfate concentration and initial concentration of RG19. The amount of sodium persulfate ((Formula presented.)) was varied at different levels (20–100 mM) relative to precursor radical to assess the optimum usage of persulfate concentration for RG19 degradation. Evidence that RG19 could degrade efficiently had occurred at 100 mg/L, initial pH 9, 60 mM persulfate concentration was identified by FTIR and GC/MS analysis. The results revealed that RG19 could achieve complete decolorization easily as compared to mineralization. In addition, RG19 degradation pathway gave the best representation of level degradation. The GC/MS and FTIR results exhibited the proposed RG19 degradation pathway that involved the characteristic of sulfonic group, (Formula presented.) accompanied with (Formula presented.) became as an indicator of their structure broken down one by one. The degradation products such as oxalic acid, formic acids and others were analyzed and finally converted to carbon dioxide and water. The diazo dye structure itself aided with (Formula presented.) has its superior characteristic as an aid for the efficient degradation process.
      1
  • Publication
    Iron removal efficiency in synthetic Acid Mine Drainage (AMD) treatment using peat soil
    ( 2022-01-01)
    Mohd Syazwan Mohd Halim
    ;
    ; ;
    Suhaina Ismail
    ;
    Ku Esyra Hani Ku Ishak
    ;
    Moncea Andreea
    Acid mine drainage (AMD) formation is due to the sulfide minerals reaction either chemically or biologically when exposed to atmospheric conditions. The AMD formation often occurred in the region involved with anthropogenic activities, including mining, agricultural plantation, urban development and logging. Treatment of AMD is a challenging part of most mining operations around the world. Selection of method treatment is crucial depending on the area’s geological, mineralogical, topography and AMD characteristic. There are two types of method treatment; active and passive treatment method. In this study, passive treatment method was adopted; which is successive alkalinity producing system (SAPS). The study aims to analyze effect of variable parameters on iron (Fe) concentration and propose optimum operating condition for AMD treatment. Peat soil and limestone aggregate was used as treatment media in treatment tank. Synthetic AMD was formulated using sulphuric acid (H2SO4) and iron sulfate (FeSO4) to represent actual AMD. Once the synthetic AMD was introduced, water samples were collected and analyzed using UV–Vis test after 6 to 48 h’ retention time. Based on the analysis, the proposed methodology has successfully reduced more than 85% iron content only after 6 h of retention time. The maximum Fe removal percentage recorded was 95%, using the higher peat soil depth configuration. The statistical analysis results show that the optimum operating condition for SAPS with high Fe removal is using high peat soil depth. Experiments with higher peat soil depth provide satisfactory results in treating the high initial Fe concentration regardless of the retention time for the AMD treatment.
      4  2
  • Publication
    Physial properties of nanocellulose extracted from empty fruit bunch
    The high content of cellulose in lignocellulosic waste can be further utilized to produce nanocellulose (NCC). Conventional method of dissolving lignocellulosic waste in acid solvent is detrimental to the environment. Thus, a new method for utililizing lignocellulosic waste using environmental friendly solvent should be developed. NCC can be produced by dissolution of palm oil empty fruit bunch (EFB) in green solvent, natural deep eutectic solvent (NADES). In this study, palm oil EFB was used to produce NCC by dissolving in NADES and analysed for its characterization. Atomic force microscope (AFM) and transmission electron microscope (TEM) were used to evaluate the NCC’s morphology and dimension. Under AFM analysis, the average height of NCC produced was 15.574±3.658 nm while the obtained diameter is 53.179±24.237 nm. Using TEM analysis, the NCC produced was a needle-like particles with average diameter of 17.842 ± 2.859 nm, while the length is 185.486 ± 91.776 nm. Based on TGA results, NCC produced has a thermal stability at 224 °C. From the results obtained, the dissolution of cellulose in NADES is able to produce nanocellulose with similar properties as nanocellulose produced using conventional method.
      1  25
  • Publication
    Influence of leachate matrix on oxidation performance of ozonation and aops
    Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.
      1
  • Publication
    Removal of palm oil mill effluent by using electro-oxidation process
    ( 2020-06-10) ;
    Sabri S.N.
    ;
    ;
    Bashir Mohammed J.K.
    ;
    ; ;
    Mohamed Hussein N.F.
    ;
    Mahiran N.Q.
    Wastewater includes the Palm Oil Mill Effluent (POME) that gives adverse impacts to the environment especially for water pollution when it is not treated properly. POME are known to have various types of liquids, residual oil and suspended solid as it has very high strength waste in its untreated form. Although conventional biological processes are normally efficient for the degradation of pollutants occurring in wastewater, most of these compounds are not effectively removed. As a result, further treatment is needed to meet more stringent discharge standards of Department of Environment (DOE). This research focused on treatment of POME by using electro-oxidation process (EO). It was done to identify the performance of EO process for colour, chemical oxygen demand (COD), suspended solids (SS), ammoniacal-nitrogen (NH3-N), and turbidity removal as well as the relative effects of different operational parameters such as pH, type of electrodes and contact time. The pH was varied from 3 to 11, the electrodes were aluminium and iron and the contact time was from 0 to 120 min. The most suitable pH, contact time and type of electrode were pH 3, 120 min and Al electrode.
      1  28
  • Publication
    Electro-oxidation as Tertiary Treatment Techniques for Removal of Palm Oil Mill Effluent
    The production of palm oil, though, results in the generation of huge quantities of polluted wastewater normally referred as palm oil mill effluent (POME). It gives adverse impacts to the environment, particularly if it is not properly treated. POME are known to have various types of liquids, residual oil and suspended solid as it has very high strength waste in its untreated form. Although conventional biological processes are normally efficient for the degradation of pollutants occurring in wastewater, most of these compounds are not effectively removed. As a result, further treatment is needed to meet more stringent discharge standards of Department of Environment (DOE), Malaysia. This research focused on treatment of POME by using electro-oxidation process (EO). It was done to identify the performance of EO process for colour, chemical oxygen demand (COD), suspended solids (SS), and Ammoniacal-nitrogen NH3-N) removal as well as the relative effects of different operational parameters such as pH, type of electrodes and contact time. The pH was varied between 3 and 11, using Ferum (Fe) and Aluminium (Al) electrode, and contact time from 0 to 120 min. The most suitable pH, contact time and type of electrode were pH 3, 120 min and Aluminium electrode, respectively. Therefore, EO process at specified level can be used as an efficient and effective post-treatment technology to meet the standard regulatory requirements.
      5  30
  • Publication
    Isu pemanasan global
    Panasnya hari ini! Pernahkan anda mendengar rungutan atau keluhan seperti ini keluar daripada mulut masyarakat sekitar anda? Atau anda sendiri pernah mengalami hal ini. Anda tidak salah, data-data yang ada memang menunjukkan bumi kita mengalami peningkatan suhu yang amat merisaukan sejak akhir-akhir ini. Hal ini berkait langsung dengan isu global yang kebelakangan ini makin hangat diperkatakan oleh masyarakat dunia iaitu pemanasan global. Ironinya, kesedaran mengenai hal ini dalam kalangan masyarakat amat kurang dan tidak hairan ada dalam kalangan masyarakat, langsung tidak tahu mengenai pemanasan global. Buku ini direalisasikan untuk memberi pengetahuan kepada pembacanya mengenai pemanasan global, punca pemanasan global, kesan-kesannya serta langkah-langkah pencegahan yang perlu dimainkan oleh semua pihak. Buku ini turut membincangkan pelaksanaan Protokol Montreal dan Protokol Kyoto dalam menangani masalah pemanasan global
      1  161