Now showing 1 - 10 of 21
  • Publication
    Influence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process
    ( 2017-10-01)
    Noradiba Nordin
    ;
    ; ; ; ;
    Sin Li Lee
    ;
    Oon Yoong Sin
    ;
    Oon Yoong Ling
    A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.
  • Publication
    Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5
    ( 2017-01-01)
    Noradiba Nordin
    ;
    ; ; ; ;
    Lee Sin Li
    ;
    Oon Yoong Sin
    ;
    Oon Yoong Ling
    A novel hybrid system composed of a photocatalytic fuel cell (PFC) and Fenton reactor was developed with the aim to degrade the azo dye Reactive Black 5 (RB5) and generate electricity. Compared to previously established system of bioelectro-Fenton system, microbial fuel cell (MFC) system has significant challenge in the development and operation system. Therefore, PFC is used instead of MFC to generate electrons for the Fenton system. The effect of azo dye (RB5) on each PFC and Fenton reactor was investigated. The experimental results showed that maximum power output was achieved in the absence of dye in the Fenton reactor of this hybrid system. Furthermore, higher degradation efficiency of RB5 could also be observed in the PFC reactor in this hybrid system.
  • Publication
    Preliminary screening oxidative degradation methyl orange using ozone/ persulfate
    ( 2018)
    Nur Aqilah Razali
    ;
    ; ; ; ;
    Siti Nasuha Sabri
    ;
    Su Huan Kow
    The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.
  • Publication
    Electro-oxidation as Tertiary Treatment Techniques for Removal of Palm Oil Mill Effluent
    The production of palm oil, though, results in the generation of huge quantities of polluted wastewater normally referred as palm oil mill effluent (POME). It gives adverse impacts to the environment, particularly if it is not properly treated. POME are known to have various types of liquids, residual oil and suspended solid as it has very high strength waste in its untreated form. Although conventional biological processes are normally efficient for the degradation of pollutants occurring in wastewater, most of these compounds are not effectively removed. As a result, further treatment is needed to meet more stringent discharge standards of Department of Environment (DOE), Malaysia. This research focused on treatment of POME by using electro-oxidation process (EO). It was done to identify the performance of EO process for colour, chemical oxygen demand (COD), suspended solids (SS), and Ammoniacal-nitrogen NH3-N) removal as well as the relative effects of different operational parameters such as pH, type of electrodes and contact time. The pH was varied between 3 and 11, using Ferum (Fe) and Aluminium (Al) electrode, and contact time from 0 to 120 min. The most suitable pH, contact time and type of electrode were pH 3, 120 min and Aluminium electrode, respectively. Therefore, EO process at specified level can be used as an efficient and effective post-treatment technology to meet the standard regulatory requirements.
      1
  • Publication
    Physial properties of nanocellulose extracted from empty fruit bunch
    The high content of cellulose in lignocellulosic waste can be further utilized to produce nanocellulose (NCC). Conventional method of dissolving lignocellulosic waste in acid solvent is detrimental to the environment. Thus, a new method for utililizing lignocellulosic waste using environmental friendly solvent should be developed. NCC can be produced by dissolution of palm oil empty fruit bunch (EFB) in green solvent, natural deep eutectic solvent (NADES). In this study, palm oil EFB was used to produce NCC by dissolving in NADES and analysed for its characterization. Atomic force microscope (AFM) and transmission electron microscope (TEM) were used to evaluate the NCC’s morphology and dimension. Under AFM analysis, the average height of NCC produced was 15.574±3.658 nm while the obtained diameter is 53.179±24.237 nm. Using TEM analysis, the NCC produced was a needle-like particles with average diameter of 17.842 ± 2.859 nm, while the length is 185.486 ± 91.776 nm. Based on TGA results, NCC produced has a thermal stability at 224 °C. From the results obtained, the dissolution of cellulose in NADES is able to produce nanocellulose with similar properties as nanocellulose produced using conventional method.
      1
  • Publication
    Iron removal efficiency in synthetic Acid Mine Drainage (AMD) treatment using peat soil
    ( 2022-01-01)
    Mohd Syazwan Mohd Halim
    ;
    ; ;
    Suhaina Ismail
    ;
    Ku Esyra Hani Ku Ishak
    ;
    Moncea Andreea
    Acid mine drainage (AMD) formation is due to the sulfide minerals reaction either chemically or biologically when exposed to atmospheric conditions. The AMD formation often occurred in the region involved with anthropogenic activities, including mining, agricultural plantation, urban development and logging. Treatment of AMD is a challenging part of most mining operations around the world. Selection of method treatment is crucial depending on the area’s geological, mineralogical, topography and AMD characteristic. There are two types of method treatment; active and passive treatment method. In this study, passive treatment method was adopted; which is successive alkalinity producing system (SAPS). The study aims to analyze effect of variable parameters on iron (Fe) concentration and propose optimum operating condition for AMD treatment. Peat soil and limestone aggregate was used as treatment media in treatment tank. Synthetic AMD was formulated using sulphuric acid (H2SO4) and iron sulfate (FeSO4) to represent actual AMD. Once the synthetic AMD was introduced, water samples were collected and analyzed using UV–Vis test after 6 to 48 h’ retention time. Based on the analysis, the proposed methodology has successfully reduced more than 85% iron content only after 6 h of retention time. The maximum Fe removal percentage recorded was 95%, using the higher peat soil depth configuration. The statistical analysis results show that the optimum operating condition for SAPS with high Fe removal is using high peat soil depth. Experiments with higher peat soil depth provide satisfactory results in treating the high initial Fe concentration regardless of the retention time for the AMD treatment.
      4  2
  • Publication
    Influence of leachate matrix on oxidation performance of ozonation and aops
    Landfill leachate is a critical environmental issue that should be adequately treated to prevent it from spreading to the environment. This study explored the influence of raw leachate matrix and treated leachate matrix on O3, O3/H2O2, and O3/PS performance. O3 and AOPs were conducted in a laboratory-scale batch reactor. The findings showed the degradation of p-cresol, COD, and humic substances was much slower in treated leachate matrix than in raw leachate matrix. However, color was found easier to remove in treated leachate. The results revealed a synergic effect between molecular O3 and dissolved organic matter in the raw leachate as the O3 performance was enhanced in the presence of raw leachate matrix, except for color removal. The highest degradation of more than 90% was achieved in O3 /H2 O2 to remove COD, p-cresol, and humic substances, although it is the most affected by the leachate matrix. This study provides vital insight into the notable performance of O3 /PS in color removal regardless of the influence of leachate matrix, suggesting that the sulfate radical-induced oxidation outperformed O3 and O3 /H2 O2 in reducing nitrogen-containing compounds.
      1
  • Publication
    Isu pemanasan global
    Panasnya hari ini! Pernahkan anda mendengar rungutan atau keluhan seperti ini keluar daripada mulut masyarakat sekitar anda? Atau anda sendiri pernah mengalami hal ini. Anda tidak salah, data-data yang ada memang menunjukkan bumi kita mengalami peningkatan suhu yang amat merisaukan sejak akhir-akhir ini. Hal ini berkait langsung dengan isu global yang kebelakangan ini makin hangat diperkatakan oleh masyarakat dunia iaitu pemanasan global. Ironinya, kesedaran mengenai hal ini dalam kalangan masyarakat amat kurang dan tidak hairan ada dalam kalangan masyarakat, langsung tidak tahu mengenai pemanasan global. Buku ini direalisasikan untuk memberi pengetahuan kepada pembacanya mengenai pemanasan global, punca pemanasan global, kesan-kesannya serta langkah-langkah pencegahan yang perlu dimainkan oleh semua pihak. Buku ini turut membincangkan pelaksanaan Protokol Montreal dan Protokol Kyoto dalam menangani masalah pemanasan global
      46  644
  • Publication
    Recovery of nano-lignin from anaerobic treated palm oil mill effluent (AT-POME)
    Lignin is the main polymers in woody biomass aside cellulose and hemicelluloses Recently, nano-lignin is gaining importance due to the increasing demand for bio-based and bio-active nanomaterial fillers for many applications such as in composite and textile industries. Palm oil mill effluent (POME) is the main wastewater produce by palm oil mills. Anaerobically treated (AT-POME) contains high soluble lignin due to the anaerobic digestion of cellulosic material in POME. Nano-lignin was precipitated by adjusting the initial pH of AT-POME during the sonication process. Sulfuric acid (H2SO4), nitric acid (HNO3), hydrochloric acid (HCl) and phosphoric acid (H3PO4) were used to adjust the initial pH of AT-POME. Result shows that sulfuric acid was the most suitable acid to be used as it could recovered 96% of the soluble lignin in AT-POME. The presence of ultrasonic during the precipitation process had reduced the size to 383.4 nm. The optimum operating parameter for lignin recovery is at pH 4 using sulfuric acid and sonicated at 80 watts for 15 minutes. This study shows that sonication could reduce the size of precipitated lignin from AT-POME. In addition, removal of lignin from AT-POME also reduced the COD content of AT-POME.
      3  1
  • Publication
    Remediation of carcinogenic PAHs from landfill leachate by Electro-Fenton process – Optimization and modeling
    ( 2024-07-01)
    Singa P.K.
    ;
    Rajamohan N.
    ;
    Isa M.H.
    ;
    ;
    PAHs is the group of emerging micro-pollutants present in most environmental matrices that has the tendency to bioaccumulate and cause carcinogenic effects to human health. The present research involved the quantification and treatment of leachate produced from secured landfill, to eliminate the PAHS. Electro-Fenton process, a class of advanced oxidation process, is adopted to degrade the PAHs using titanium electrodes as both anode and cathode. Artificial intelligence based statistical tool “Central Composite Design” a module of JMP -19 software was used to design the experiments and optimize the critical parameters involved in the research. It was observed that the value of P is significant (P < 0.05) for all the independent variables evidencing the significant correlation between experimental values and predicted values of the software. The value of R2 obtained was 0.96 and 0.97 for COD and PAHs respectively. The maximum removal efficiency of COD and PAH was found to be 84.24% and 90.78% respectively. The optimized conditions obtained from the central composite design were: pH = 5; Fe2+ = 0.1 g/L; H2O2 = 2 g/L; reaction time = 60 min; and electric intensity = 0.2 A. Additionally, optimized experimental conditions were used to study the removal efficiencies of individual 16 PAHs and are also reported. From the close proximity of experimental and predicted results of the software it can be proved that central composite design is efficient enough to be used as a statistical tool in design and analysis for treatment of landfill leachate.
      1