Options
Rizalafande Che Ismail
Preferred name
Rizalafande Che Ismail
Official Name
Rizalafande, Che Ismail
Alternative Name
Ismail, Rizalafande C.
Rizalafande, Che Ismail
Chesmail, R.
Ismail, R. C.
Che Ismail, Rizalafande
Ismail, Rizalafande Che
Ismail, R. Che
Main Affiliation
Scopus Author ID
22634128600
Now showing
1 - 10 of 13
-
PublicationDevelopment of Soil Electrical Conductivity (EC) Sensing System in Paddy Field( 2021-03-01)
;Othaman N.N.C.The amount of fertilisers affects electrical conductivity (EC), and it is one of the major causes of the paddy yield decrease. The overuse of fertilisers can lead to environmental pollution and contamination. This study designed to develop soil electrical conductivity (EC) sensing system in the paddy field using the smart farming application. In this work, the study conducted in Kampung Ladang, Kuala Perlis, and the soil samples collected from a random location at two different depths from the paddy field. The EC value for the developed system was near the calibration solutions (12880µS and 150000µS) and directly proportional to the temperature. From the laboratory soil results, the EC values of the soils were higher with fertiliser. However, the EC values for 0-10cm soil depth were higher than 10-20cm soil depth. The soil EC is inversely proportional to the depth of soil and directly proportional to the amount of nutrients. It observed that the soil EC is linearly related to the amount of nutrients and temperature. The EC value decreases with the increase of soil depth displays a low amount of salts in the deep soil, while, increases with the increase of temperature indicates high current flow. -
PublicationBiological sequence alignments: A review of hardware accelerators and a new PE computing strategy( 2014)Khaled BenkridOne of the most challenging tasks in sequence alignment is its repetitive and time-consuming alignment matrix computations. In addition, performing sequence alignment in hardware, i.e. FPGA requires more hardware resources as the number of processing elements is replicated to increase performance throughput. This paper first reviews the existing FPGA-based biological sequence alignment core architectures and then proposed an efficient scheduling strategy, the so-called overlap computation and configuration (OCC) towards realizing optimized biological sequence alignment core architecture targeting for pairwise sequence alignment. In this research work, double buffering-based core architecture have been proposed and implemented on Xilinx Virtex-5 FPGA. Results have shown that this approach gained more than 10K times speed-up as compared to the GPP solution.
-
PublicationHybrid logarithmic number system arithmetic unit: A review( 2013)
;M.K ZakariaLogarithmic number system (LNS) arithmetic has the advantages of high performance and high-precision in complex function computation. However, the large hardware problem in LNS addition/subtraction computation has made the large word-length LNS arithmetic implementation impractical. In this paper, the concept of merging the LNS and Floating Point (FLP) operation into a single arithmetic logic unit (ALU) that can execute addition/subtraction and division/multiplication more faster, precise and less complicated has been reviewed. The advantages of using hybrid system were highlighted while comparing and explaining about FLP and LNS. -
PublicationDesign of 5 V DC to 20 V DC switching regulator for power supply module( 2017)
;Nor Afiqah AzmiM. A. ZulkifeliThis paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module. © 2017 Author(s). -
Publicatione-PADI: an iot-based paddy productivity monitoring and advisory system( 2019)
;M.A.F. Ismail ;S. N. Mohyar ;M. N. M. Ismail ;A. HarunRice is source of food calories and protein. This second most widely grown cereal crop is the staple food for more than half the world’s population especially in developing countries. The ability of global rice production to meet population demands (now estimated at more than 5 billion and projected to rise to 8.9 billion by 2050) remains in uncertainty in the near future unless challenges in rice production are properly addressed [1-3]. This paper proposed an IoT (Internet of things)-based paddy productivity monitoring and advisory system Using Dash7 Wireless Network Protocol. All collected data will be stored in a database management system to enable users to retrieve data either from tablets, smartphones or computers. The heart of the system is the ATmega328p microcontroller that will control the payload of the wireless network of dash7 and read data from sensor nodes. Results show all data from sensor nodes in representation of graph for analysis purpose. -
PublicationAnalysis of FXP adders and multipliers for speed- and area-efficient LNS arithmetic unit( 2014)J. N. ColemanThis paper portrays the selection of hardware unit architectures to be implemented in the new LNS based on a 32bit system. The implementations of the LNS multiply and divide only require a FXP adder, while the LNS addition and subtraction function comprised of several memories, FXP adders and multipliers together with other supporting logics. Thus, in choosing the best FXP adders and multipliers, each of the arithmetic is functionally verified and synthesised using Synopsys Design Compiler in Faraday 0.18 μm CMOS technology based on a 32-bit system. Two types of performance measurement, which are the worst-case delay and the silicon area, are chosen as the evaluation arguments. From conducted analytical studies, the CLA/CSLA adder and Booth recoded with Wallace tree multiplier were the best FXP adder and multiplier blocks to be applied in the system since they were the fastest designs. Using these blocks, the synthesis of the LNS system produced an approximately 7.10 ns of critical delay for addition and subtraction, and solely 1.16 ns for multiplication and division. The total area for a complete LNS architecture was 599,871 μm2, in which 65% the size of previously designed LNS architecture of ELM. © 2014 IEEE.
-
PublicationMachine vision for laser defect in PV solar modules( 2016)
;R. ShuaimiThis paper presents a new methodology in inspection on laser scribe defect of PV thin film solar modules. The work focuses on the application of machine vision as an inspection tools which has successfully integrated in other manufacturing environment as pattern recognition utility. Compared to manual inspection by human, machine vision system could offer better measurement accuracy as scribe defects are extremely hard to detect due to their small sizes and complexity of the detection process. Studies were made to identify machine vision system screening capabilities to define different scribe defect by their inspection criteria. Current result with paper and broad samples indicates that the propose system can be used effectively to replace human evaluators that currently employs in manufacturing quality control. © 2016 IEEE. -
PublicationDevelopment of varied CMOS ring oscillator topologies in 0.13-μm CMOS technology( 2013)
;Mohamad Shahimin MukhzeerSapawi RohanaThis paper presents varied CMOS ring oscillator topologies using Silterra 0.13-µm Process. Three topologies of ring oscillators have been designed which is the single-ended ring oscillator, differential ring oscillator and ring oscillator based variable resistor for 2.4 GHz wireless applications. The proposed designs consist of five stages delay cell. The simulation results show that a single-ended ring oscillator obtained the lowest power consumption of 0.41 mW, while differential oscillator achieves phase noise of −64.44 dBc/Hz at 1 MHz offset frequency. However, ring oscillator based variable resistor did not achieve any significant improvement. The proposed design is oscillates at 2.4 GHz. -
PublicationSignal propagation modelling for vehicle-to-infrastructure communication under the influence of metal obstruction( 2021-12)
;Jamie Siregar Cynthia Turner ;D L NdziM K N ZulkifliConnected car has become one of emerging technology in the automotive industries today. This development preludes a rise in vehicular communication studies that primarily targets radio channel modelling on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication mode. Considering vehicular obstruction, vast channel propagation studies have focused more on V2V mode while others consider the typical urban scenarios consisting of high traffic volumes of moving vehicles. Due to challenging propagation mechanisms and high complexity in such areas, radio propagation models applied in simulators assume an obstacle-free environment rather than considering the least effect imposed by metal obstruction on communication signal. Besides, there are limited studies pertaining to metal obstruction that considers several under-explored environments such as actual parking lots, junctions and other road infrastructure support. As such, this paper demonstrates signal attenuation analysis caused by the presence of metal objects in low density over obstacle-free environment on actual parking lot via V2I mode. Two scenarios such as LOS and NLOS conditions consisting of obstacle-free, cars and buses as static metal objects are evaluated. The aim of this research is to characterize signal strength caused by metal blockage on radio wave propagation predicated on the presence of vehicles as a subject of obstruction in comparison to obstacle-free vehicular environment. The validity of data is shown through received signal strength indicator (RSSI) and approximation analysis (RMSE) to demonstrate the efficiency of obtained measurements. The results demonstrated that Log-normal shadowing model yields the best fit to low-density metal obstruction scenario with smallest RMSE of 4.78 under bus obstruction whereas 5.72 under car obstruction. -
Publication