Research Output

journal journal conference proceeding conference... journal article journal ar... journal-article journal-ar...
Now showing 1 - 10 of 22
  • Publication
    Effect of indium pre-flow on wavelength shift and crystal structure of deep green light emitting diodes
    ( 2021-01-01) ;
    Hassan Z.
    ;
    Bakar A.S.A.
    ;
    Rahman M.N.A.
    ;
    Yusuf Y.
    ;
    Md Taib M.I.
    ;
    Sulaiman A.F.
    ;
    Hussin H.N.
    ;
    ; ;
    Nagai K.
    ;
    Akimoto Y.
    ;
    Shoji D.
    To produce a deep green (530 nm–570 nm) LED, the suitable indium (In) composition in the InxGa1−xN/GaN multi-quantum well (MQW) structure is crucial because a lower indium composition will shift the wavelength of emission towards the ultraviolet region. In this paper, we clarify the effects of an indium-rich layer to suppress such blue shifting, especially after the annealing process. According to characterizations by the uses of XRD and TEM, narrowing of the MQW layer was observed by the indium capping, while without the capping, the annealing results in a slight narrowing of MQW on the nearest layer to the p-type layer. By adding an indium capping layer, the blue shift of the photoluminescence was also suppressed and a slight red shift to keep green emission was observed. Such photoluminescence properties were consistent with the tiny change of the MQW as seen in the XRD and TEM characterizations.
  • Publication
    Development of varied CMOS ring oscillator topologies in 0.13-μm CMOS technology
    ( 2013) ;
    Mohamad Shahimin Mukhzeer
    ;
    ; ;
    Sapawi Rohana
    This paper presents varied CMOS ring oscillator topologies using Silterra 0.13-µm Process. Three topologies of ring oscillators have been designed which is the single-ended ring oscillator, differential ring oscillator and ring oscillator based variable resistor for 2.4 GHz wireless applications. The proposed designs consist of five stages delay cell. The simulation results show that a single-ended ring oscillator obtained the lowest power consumption of 0.41 mW, while differential oscillator achieves phase noise of −64.44 dBc/Hz at 1 MHz offset frequency. However, ring oscillator based variable resistor did not achieve any significant improvement. The proposed design is oscillates at 2.4 GHz.
  • Publication
    Copper doping effect in the back surface field layer of CdTe thin film solar cells
    ( 2024-02-01) ;
    Kiong T.S.
    ;
    Doroody C.
    ;
    Rahman K.S.
    ;
    ; ;
    Kar Y.B.
    ;
    Harif M.N.
    ;
    Amin N.
    In this work, the Solar Cell Capacitance Simulator (SCAPS-1D) is employed to evaluate the characteristics of CdTe thin films with ZnTe as the Back Surface Field (BSF) layer and estimate the effective copper doping ratio at both the atomic scale and the device operational response perspective. The electrical characteristics of ZnTe, at varying levels of copper doping, were derived using density functional theory (DFT) by applying the generalized gradient approximation (GGA) and Hubbard U corrections (DFT+U). The performance of ZnTe with different Cu concentrations as a BSF layer was evaluated by analysing the values of four key parameters that are open circuit voltage (VOC), short circuit current density (JSC), fill factor (FF), and conversion efficiency (η). The results indicate that an increase in Cu concentration from 0% to 3%, 6%, 10%, and 12% resulted in a reduction of the energy band gap. Specifically, the energy band gap decreased from 2.24 eV to 2.10 eV, 1.98 eV, 1.92 eV, and 1.88 eV, respectively. Optimal Cu doping promotes the favourable shift in the valence band maxima (VBM) and formation of p + -ZnTe, lowering thermionic emission and improving carrier lifetime, which results in an improved ohmic contact, η = 18.73% for 10% of Cu content. Excessive doping in contrast degraded the overall device performance by forming an unmatched carrier band offset at the front interface with CdS, increasing the acceptor type defect and CdTe compensation rate. Overall, the findings suggest that incorporating a controlled level of Cu, which in this case is around 10%, promotes the efficiency and stability of the proposed CdTe device configuration to a certain extent.
  • Publication
    Low-cost tilt monitoring system for spin coater calibration
    The spin coating process became the most widely used technique in the fabrication industry for thin film coating on a substrate by centrifugal force. Unfortunately, frequent usage of spin coater might induce a tilted surface of the chuck (i.e. the sample holder). A tilted chuck might induce inhomogeneity of the coating layer. Among the machine's calibration techniques, nullifying the tilt before the spin coating process is the most important step. However, to our knowledge, none of the spin coaters was introduced with the chuck's tilt monitoring during the spin coating process. Thus, investigating the discrete condition during the spin coating process is necessary. In this work, the tilt monitoring system for the spin coater was implemented based on an Arduino Uno microcontroller and distance sensor. A spin coater has been implemented to test the tilt surface monitoring during spinning ranges from 350rpm to 1000rpm. The measurement was done under two conditions: flat (0.00 degrees) and tilted (5.71 degrees). The setup was able to measure up to 0.01 degrees of the tilt.
  • Publication
    The efficiency effect of dye sensitized solar cell using different ratio of organic polymer doped titanium dioxide at different annealing process temperature
    ( 2020-01-08)
    Norhisamudin N.A.
    ;
    ;
    Rosli N.
    ;
    ;
    Juhari N.
    ;
    ;
    Zakaria N.
    Titanium Dioxide (TiO2) is one of the main materials in Dye Sensitized Solar Cell (DSSC). It is well known with its property of good optical transmittance and its mesoporous surface that can absorb generous amount of dye. In this study, TiO2 is fabricated using spin coating technique that leads to the uniform thickness of TiO2 layer. The thickness of the TiO2 can be controlled layer by layer using same technique to get an optimized surface that can lead to better performance of DSSC. In order to achieve this, the surface roughness of TiO2 must be as high as possible. Therefore, the organic material which is Poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene (MEH-PPV) is used as medium to increase the mesoporous roughness structure of TiO2 nanocrystal film for DSSC. MEH-PPV is doped into the TiO2 using 0.5 mg/ml with different temperatures of 100°C and 450°C. Different temperatures of MEH-PPV will lead to the different surface structures for TiO2 thin film. The ratio of TiO2:MEH-PPV used were 1:1 and 2:1. The surface of TiO2 thin film was characterized using Atomic Force Microscope (AFM). The efficiency was obtained using Solar Simulator based on the voltage and current flow. Based on the results, the increment of surface roughness is about 21% for the different ratio at various temperatures. The optimum temperature and suitable ratio of TiO2:MEH-PPV was obtained via annealing process at 450°C with the ratio of 2:1. It gives the highest efficiency which is 0.1266%. These two important findings yield good mesoporous surface of TiO2 thin film.
  • Publication
    Modified CMFB circuit with enhanced accuracy for data converter application
    Enhanced feedback voltage of common mode feedback (CMFB) circuit is designed in this work for CMOS data sampling application using 0.18-μm Silterra process technology. The double error detecting point circuit is employed to associate with the feedback point in order to prevent the undesired voltage common mode at the output of operational transconductance amplifier (OTA). The PMOS input transistor for injecting the common mode voltage is used to fit in the limitation of voltage division in low power design. The feedback voltage is strongly pushed to have a stable value as to make the outputs of differential amplifier circuit swing at a nearly constant voltage at 1.2 V for enhancing accuracy of data converter.
  • Publication
    First-principles investigation on the impact of copper concentration on zinc telluride as the back contact for cadmium telluride solar cells
    ( 2024-02-01)
    Ahmad N.I.
    ;
    Doroody C.
    ;
    ; ;
    Rahman K.S.
    ;
    Radzwan A.
    ;
    ALOthman Z.A.
    ;
    Katubi K.M.
    ;
    Alzahrani F.M.
    ;
    Amin N.
    ;
    Kar Y.B.
    Cadmium telluride (CdTe) solar cells have attracted a lot of interest in recent years, attributed to their low cost and eco-friendly fabrication technique. However, the back contact is still the key issue for further improvement in device performance due to the work function difference between p-CdTe and metal contacts. In this study, the interatomic characteristics of zinc telluride (ZnTe) and Cu-doped ZnTe (ZnTe:Cu) as a back surface field (BSF) in CdTe structure is investigated using first-principles density functional theory (DFT) to overcome the Schottky barrier in CdTe solar cells. The incorporation of different doping levels of copper (Cu) in ZnTe on an atomic scale, where Zn1−xTe:Cux (x = 0, 2, 4, 6, 8, and 10) as the potential back surface field layers is investigated. The effect of doping concentration on electrical characteristics such as bandgap structure and density of states (DOS) were examined via ab initio with the Hubbard U (DFT + U) correction. The results showed an interesting gradual decrease in the bandgap energy of ZnTe from 2.24 eV to 2.10 eV, 1.98 eV, 1.92 eV, 1.88 eV, and 1.87 eV for the incremented value of Cu content of 3.13%, 6.25%, 9.38%, 12.50%, and 15.63%, respectively. Accordingly, it has been found that controlling of the effective copper doping, i.e., concentration, is crucial for developing efficient back contact junctions for high-efficiency CdTe thin-film solar cells.
  • Publication
    Visible Light-Assisted Charge Extraction in High-Band-Gap SrTiO3 through the Integration of a Triplet Sensitizer-Emitter Thin Film
    ( 2024-01-22)
    Jie K.V.Y.
    ;
    ;
    Mohmad A.R.
    ;
    Ismail A.M.
    ;
    ;
    Ramli M.M.
    ;
    ;
    Sulaiman Y.
    ;
    ;
    A challenge in PV designs, including those with an electron transport layer (ETL), is the presence of ‘parasitic absorbers’. These are layers that absorb light without significantly converting it to electrical current, impacting the total external quantum efficiency (EQE). Strontium titanate (STO), a high-band-gap (3.20 eV) perovskite metal oxide, holds promise as an electron transport layer (ETL) for solar energy harvesting. Despite STO’s potential, it primarily operates in the UV spectrum, not fully utilizing the broader light range, and hence can be the source of parasitic absorbers. In this study, we report a significant enhancement in the EQE of STO through the integration of a triplet sensitizer-emitter (TSE) system, designed to upconvert the visible spectrum into UV light and improve the charge extraction from STO. The TSE system uses carbazolyl dicyanobenzene (4CzIPN) as a sensitizer and p-terphenyl (TP) as an emitter. To investigate the EQE of such a system, we fabricate STO as a PV cell. The revised PV cell architecture (ITO/TiO2/STO/TSE/PEDOT:PSS/Al) is a modification of the conventional configurations (ITO/TiO2/STO/PEDOT:PSS/Al). With the TSE thin film, the modified STO PV cell shows better charge extraction under sunlight compared to the standard STO PV cell, indicating that the upconversion process can enhance the hole conductions from STO to PEDOT:PSS through the TSE system. We noted an EQE increase with intense light of λ > 345 nm in thicker TSE layers and a decrease in the EQE under similar light intensity in thinner TSE layers. The Kelvin probe force measurement (KPFM) data showed that the TSE layer receives holes from STO under illumination. Additionally, time-resolved photoluminescence (TRPL) experiments showed that the TSE/STO thin film is able to produce UV emission after irradiation with lower energy light. Then, the EQE variation in thicker TSE layers under intense irradiation can be attributed to the solid-state upconversion, indicating its thickness-dependent performance. These findings underline the strategies for maximizing the utilization of the solar spectrum in PV applications.
  • Publication
    Design of a low-power CMOS operational amplifier with common-mode feedback for pipeline analog-to-digital converter applications
    This paper proposes a design of a low-power operational ampliér (op-amp) for pipeline analog-to-digital converter (ADC) applications using a 0.13-μm CMOS process. The folded-cascode topology with NMOS input types is employed for the op-amp design due to a larger output gain compared to PMOS input types. Furthermore, the op-amp is designed with a double detection structure of a common-mode feedback circuit to provide stable feedback voltage. The simulation results show that the proposed op-amp achieved a gain of 64.5 dB and a unity gain bandwidth of 695.1 MHz with a low power consumption of 0.14 mW. In addition, by applying ±1.2 V of input voltage, the output voltage generated by the proposed op-amp design remains at 1.2 V with a constant feedback voltage of 1.3 V. Moreover, the proposed circuit was implemented and simulated successfully in a 1.5-bit per stage pipeline ADC.
  • Publication
    Characterization of Excimer Laser Micromachining Parameters to Derive Optimal Performance for the Production of Polydimethylsiloxane (PDMS)-based Microfluidic Devices
    Laser micromachining has been used as an alternative to producing microfluidics structures and simplifying the conventional soft lithography process. In this paper we characterize the excimer laser micromachining parameters and demonstrate its application by producing several microfluidic structures in polydimethylsiloxane (PDMS). The parameters include the number of laser pulses, laser energy and rectangular variable aperture (RVA) in both x- and y-directions. We found that the laser energy and pulse rate affect the depth of micromachining d channels, while RVA in both x- and y-directions affects the width of the channels. Repetition of laser scan does not change the channel width but significantly changes the channel depth. Proper adjustment for laser energy and pulse rate is required to fabricate a desired channels depth. In order to demonstrate the microfabrication capability of an excimer laser with the optimal operating parameters, several microfluidic structures were micromachining d into PDMS with a KrF excimer laser.
      1