Options
Shahriman Abu Bakar
Preferred name
Shahriman Abu Bakar
Official Name
Shahriman, Abu Bakar
Alternative Name
Bakar, Shahriman A.B.
Shariman, A. B.
Ab, Shahriman
Abu Bakar, S.
Bakar, A. S.
Bakar, S. A.
Bakar, Shahriman Abu
Bakar, Sharifah Adzila Syed Abu
Bakar, S. Abu
Main Affiliation
Scopus Author ID
57196198202
Researcher ID
ELT-0087-2022
Now showing
1 - 10 of 64
-
PublicationHeat transfer improvement in simulated small battery compartment using metal oxide (CuO)/deionized water nanofluid( 2020-02-01)
;Bin-Abdun N.A. ;Ibrahim Z.Improving the heat transfer coefficient of working fluids is essential for achieving the best performance of manufacturing systems. As a replacement of conventional working fluids, nanofluids have a high potential for improving this heat transfer coefficient. However, nanofluids are seldom implemented in actual systems, and several factors should be considered before actual application. Accordingly, this study investigated the thermophysical properties and heat transfer rate of CuO/deionized water nanofluid with and without sodium dodecyl sulfate (SDS) surfactants. Three different volumetric concentrations of the nanofluid were prepared using a two-step preparation method. The experimental steps were divided into two phases: static and dynamic. In these experiments, the thermophysical properties of the prepared nanofluids and the heat transfer coefficient were measured using an apparatus designed based on an actual heat exchanger for a lithium ion polymer battery compartment. The effects of flow rate and surfactants on the heat transfer rate of the nanofluids with varying volumetric concentrations of 0.08%, 0.16%, and 0.40% were analyzed. The results indicate that the heat transfer rate increases considerably as the flow rate increases from 0.5 L/min to 1.2 L/min and with the presence of surfactants. The highest heat transfer rate was obtained at a 0.40% volumetric concentration of CuO/deionized water nanofluid with SDS surfactant. -
PublicationA review of the application and effectiveness of heat storage system using phase change materials in the built environment( 2021-05-03)
;Ibrahim Z. ;Newby S. ;Hassani V. ;Ya'akub S.R.Global warming is the most significant threat that civilization faced within the 21st century. Buildings, which account for 40% of global consumption of energy and greenhouse gas emissions, play a key role in global warming. It is estimated that their destructive impact will grow by 1.8 percent per year by 2050, indicating that future energy consumption and emissions will be more critical than they are today. Therefore, the use of a latent heat storage system using phase change materials (PCM) is one of the effective ways of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCM has been widely used in latent heat thermal storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. Thermal energy conservation by latent heat is an ideal way to increase the thermal inertia of building envelopes, which would minimize temperature fluctuations, contributing to increased occupants' thermal comfort. For this reason, high-density PCM can be used effectively. This paper reviews recent studies of the application and effectiveness of using PCM in the built environment. -
PublicationEvaluation lead removal kinetics modelling of adsorption by using composite of Chitosan and Ceramic waste( 2023-01-01)
;Geedi H.S. ;Khamidun M.H. ;Mohamed R.M.S.R. ;Daud M.F.C.Md Ali U.F.This study focuses on understanding the Pb adsorption kinetics from greywater using a composite of chitosan and ceramic waste (CCCW), which is suitable for preserving water quality. For ease and general application, a kinetic model with a simple expression and a manageable small set of parameters that nevertheless provides a fair adsorption description in the equilibrium state is still critical. Although some current kinetic models, such as the pseudo-second-order type, meet these conditions, their performance is still questionable, especially when applied to a variety of experimental data. Batch adsorption experiments were carried out with the predetermined value of the operational parameter such as adsorbent dosage, contact time, and shaking speed. Kinetic models such as pseudo-first order, pseudo-second order, intraparticle diffusion kinetic model, Avrami model, and the Bangham model were used in this study to understand the kinetics of removal of lead from greywater. The efficacy results of adsorbent's dose in lead removal process with increasing adsorption capacity with contact time from 0.0014 to 0.00277 mg/g, the removal efficiency increases from 45.90 to 90.83%. The most significant contribution of this work is an understanding of the optimal kinetics model that can describe the behaviour of lead adsorption on CCCW. Five models for the adsorption of Pb2+ have been identified to clarify the kinetics models' usefulness in accuracy based on rank order. This study may provide insight into understanding the ability and usability of the appropriate model in kinetics adsorption. -
PublicationTensile characterizations of oil palm empty fruit bunch (Opefb) fibres reinforced composites in various epoxy/fibre fractions( 2022-10-15)
;Tamrin S.B.M. ;Israr H.A. ;Guan N.Y. ;Kamis N.A.Oil palm empty fruit bunch (OPEFB) single fibers and reinforced composites were comprehensively characterized through tensile tests to assess their performance as potential reinforcing materials in polymer composites. The performances of OPEFB single fibers and reinforced composites with untreated and treated fibers conditions were compared. The fibers were variously treated with 3% sodium hydroxide, 2% silane, 3% sodium hydroxide mixed with 2% silane, and 3% sodium hydroxide prior to 2% silane for 2 hours soaking time. The highest toughness of the single fibers test was then selected to proceed with composites fabrication. The OPEFB composites were fabricated in 90:10, 80:20, 70:30, and 60:40 epoxy-fibre fractions. The result shows that the selected treated fiber composite exhibits better performance. The selected treated fiber composite increased the highest ultimate tensile strength by 145.3% for the 90:10 fraction. The highest Young’s Modulus was increased by about 166.7% for 70:30 fraction. Next, the highest toughness was increased by 389.5% for the 30:70 fraction. The treated fibers provided a better interlocking mechanism between the matrix and fibers in reinforced composites, thus improving their interfacial bonding. -
PublicationDevelopment of Driving Simulation Experiment Protocol for the Study of Drivers’ Emotions by using EEG Signal( 2024-06-01)
;Abdul Hafiz Abd HalinThe Brain-Computer Interface (BCI) is a field of research that studies the EEG signal in order to elevate our understanding of the human brain. The applications of BCI are not limited to the study of the brain wave but also include its applications. The studies of human emotions specific to the vehicle driver are limited and not vastly explored. The EEG signal is used in this study to classify the emotions of drivers. This research aims to study the emotion classifications (surprise, relax/neutral, focus, fear, and nervousness) while driving the simulated vehicle by analyse the EEG signals. The experiments were conducted in 2 conditions, autonomous and manual drive in the simulated environment. In autonomous driving, vehicle control is disabled. While in manual drive, the subjects are able to control the steering angle, acceleration, and brake pedal. During the experiments, the EEG data of the subjects is recorded and then analyzed. -
PublicationSimulation studies of the hybrid human-fuzzy controller for path tracking of an autonomous vehicle( 2021-01-01)
;Halin H. ;Haris H. ;Zunaidi I.Human intelligence and experience help them in making a decision and recognize a pattern. This ability enables the driver to take action even in an unexpected situation. The hybrid integration between human intelligence/experience and machine controller able to improve the autonomous vehicle path tracking capability. The path tracking capability is the main concern of the autonomous vehicle. The Fuzzy developed from the experiment’s data. The experiments (human navigation experiments) used to gather the appropriate data from humans while controlling the buggy car. Data then use to develop the membership functions for inputs and output of the Fuzzy controller. The simulation uses to study the performance of the Fuzzy controller. The recorded path tracking error from the simulations for the right and left turn maneuver is 9 m and 7.5 m, respectively. -
PublicationInvestigating the Effect of Individuality Factors in Measuring Aggression induced by Human Brain( 2022-01-01)
;Xutung K. ;Lugieswaran M. ;Mustafa W.A. ;Ali H.Mokhtar N.Aggression is a behaviour of human that may cause physical or emotional harm to others. Several factors that cause aggressive behaviour such as physical health, mental health and socioeconomic. Many previous researchers reported that aggression could be measured through either questionnaire or the brain signals. This paper proposes the experimental studies to collect the brain signal of the human subject for investigating the effect of individuality in aggression. Ten subjects are selected to perform the aggression activities. The experimental protocol for inducing aggression is proposed. In general, there are four tasks which is collecting brain data in relaxing state before and after the experiments, and data collection while playing game in muted and maximum volume levels. In the experiments, the subject are required to play a popular non-violence smart phone game named “Subway Surfers” and at the same time the EEG signals are recorded from the subject’s brain. In the signal pre-processing stage, a Butterworth filter is used to remove the noises contain in the signals. A windowing technique is employed for extracting significant features. A Pearson correlation technique is used to reduce and remain the less and most significant features. In the methodologies, the aggressiveness level A, is defined to investigate the effect of individuality in inducing the aggression signals. The proposed experimental protocol and signal processing techniques are seen able to generate level of aggression. -
PublicationSignal propagation modelling for vehicle-to-infrastructure communication under the influence of metal obstruction( 2021-12)
;Jamie Siregar Cynthia Turner ;D L NdziM K N ZulkifliConnected car has become one of emerging technology in the automotive industries today. This development preludes a rise in vehicular communication studies that primarily targets radio channel modelling on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication mode. Considering vehicular obstruction, vast channel propagation studies have focused more on V2V mode while others consider the typical urban scenarios consisting of high traffic volumes of moving vehicles. Due to challenging propagation mechanisms and high complexity in such areas, radio propagation models applied in simulators assume an obstacle-free environment rather than considering the least effect imposed by metal obstruction on communication signal. Besides, there are limited studies pertaining to metal obstruction that considers several under-explored environments such as actual parking lots, junctions and other road infrastructure support. As such, this paper demonstrates signal attenuation analysis caused by the presence of metal objects in low density over obstacle-free environment on actual parking lot via V2I mode. Two scenarios such as LOS and NLOS conditions consisting of obstacle-free, cars and buses as static metal objects are evaluated. The aim of this research is to characterize signal strength caused by metal blockage on radio wave propagation predicated on the presence of vehicles as a subject of obstruction in comparison to obstacle-free vehicular environment. The validity of data is shown through received signal strength indicator (RSSI) and approximation analysis (RMSE) to demonstrate the efficiency of obtained measurements. The results demonstrated that Log-normal shadowing model yields the best fit to low-density metal obstruction scenario with smallest RMSE of 4.78 under bus obstruction whereas 5.72 under car obstruction. -
PublicationMicrowave dielectric analysis on porous hydroxyapatite/starch composites with various ratio of hydroxyapatite to starch( 2020-07-09)
;You B.C.This study aims to investigate the dielectric response of the porous hydroxyapatite/starch composites by varying the starch proportion in determining the feasibility of the microwave sample characterization technique in bone tissue engineering. The porous hydroxyapatite/starch composites were fabricated by using natural starch (gelatinization and retrogradation) through the solvent casting and particulate leaching technique. The dielectric constant (ϵ′) and loss factor (ϵ″) of the complex permittivity of the porous hydroxyapatite/starch composites were measured in the Ku band frequency of 12.4-18.0 GHz. ϵ′ and ϵ″ of the porous composites increase with frequency. The highly porous composite that due to higher starch proportion exhibit higher ϵ′ and ϵ″, resulting in the significant dielectric responses. -
PublicationDesign Optimization of Exhaust Manifold's Divergence Characteristics in Enhancing High-End Power in 115cc SI Engine( 2022-01-01)
;Murali R. ;Ishak A.A. ;Ika Syahira Abdullah ;Ibrahim Z.The exhaust system especially the exhaust manifold is an essential component that affects the performance of the Spark Ignition (SI) engine. The critical factor inside the exhaust system that affects the engine's performance is backpressure. Backpressure is known as the difference between maximum pressure in the exhaust system and atmospheric pressure. Based on previous studies, it was found that an un-optimal exhaust manifold's design leads to higher backpressure that reduces the performance and the fuel efficiency of the SI engine. This research aimed at enhancing the high-end power of the 115cc SI engine by optimizing the exhaust manifold's divergence characteristics through 1D engine analysis. S/N ratio analysis was used through Taguchi's method as a tool to conduct the design optimization. From the analysis, it was found that the optimal exhaust manifold's divergence configuration improved the mean brake power by 4.67% at high-end engine speed. It is expected that the optimal exhaust manifold's divergence configuration could also improve the engine's brake torque and fuel efficiency which could directly reduce the carbon footprint to the environment.