Options
Tijjani Adam
Preferred name
Tijjani Adam
Official Name
Tijjani, Adam
Alternative Name
Adam, T.
Adama, Tijjani
Adam, Tijjani
Adam, Tijjan
Tijjani, A.
Main Affiliation
Scopus Author ID
55074964600
Researcher ID
AAH-5534-2019
Now showing
1 - 10 of 78
-
PublicationSelective detection of amyloid fibrils by a dipole moment mechanism on dielectrode – Structural insights by in silico analysis( 2023)
;Hussaini Adam ; ;Thirumananseri Kumarevel ;M.K. Md Arshad ; ; ;Sreeramanan Subramaniam ;Yeng Chen -
PublicationMolecular-imprinting assisted polydopamine-aptasensor on carbon and gold nanomaterials construct for the haemophilia B biomarker detection( 2024-06)
;Hemavathi Krishnan ; ; ;Makram A. Fakhri ;Evan T. SalimNarendra PatilThe study presents a comprehensive approach for enhancing the performance of a spiral micro-interdigitated electrode (spiral-μIDE) sensor for the detection of FIX protein. Electropolymerization using dopamine resulted in a molecular-imprinted polymer (polyDOP-μIDE-MIP) layer, which encapsulated the aptamer-FIX complex and was later leached to create cavities. Cyclic and linear-sweep voltammetry techniques were utilized for the MIP development and rebinding assessment. Linear sweep voltammetry demonstrated a linear relationship between FIX concentration and peak current reduction, with a limit of detection (LOD) of 0.250 picomolar. The sensor's sensitivity was determined as 2.613E-10 A.fM-1.μm-2. This work highlights the importance of nanomaterials integration, and electropolymerization in improving sensor performance. The integration of carbon and gold nanomaterials and the use of molecular imprinting contribute to the sensor's enhanced sensitivity and selective detection of FIX protein. -
PublicationSilica and graphene mediate arsenic detection in mature rice grain by a newly patterned current–volt aptasensor( 2021)
;M. N. A. Uda ; ; ;N. H. Halim ;N. A. Parmin ;M. N. Afnan Uda ;Periasamy AnbuArsenic is a major global threat to the ecosystem. Here we describe a highly accurate sensing platform using silica nanoparticles/graphene at the surface of aluminum interdigitated electrodes (Al IDE), able to detect trace amounts of arsenic(III) in rice grain samples. The morphology and electrical properties of fabricated Al IDEs were characterized and standardized using AFM, and SEM with EDX analyses. Micrometer scale Al IDEs were fabricated with silicon, aluminum, and oxygen as primary elements. Validation of the bare Al IDE with electrolyte fouling was performed at different pH levels. The sensing surface was stable with no electrolyte fouling at pH 7. Each chemical modification step was monitored with current–volt measurement. The surface chemical bonds were characterized by fourier transform infrared spectroscopy (FTIR) and revealed different peaks when interacting with arsenic (1600–1000 cm−1). Both silica nanoparticles and graphene presented a sensitive limit of detection as measured by slope calibration curves at 0.0000001 pg/ml, respectively. Further, linear regression was established using ΔI (A) = 3.86 E−09 log (Arsenic concentration) [g/ml] + 8.67 E−08 [A] for silica nanoparticles, whereas for graphene Y = 3.73 E−09 (Arsenic concentration) [g/ml] + 8.52 E−08 on the linear range of 0.0000001 pg/ml to 0.01 pg/ml. The R2 for silica (0.96) and that of graphene (0.94) was close to the maximum (1). Modification with silica nanoparticles was highly stable. The potential use of silica nanoparticles in the detection of arsenic in rice grain extract can be attributed to their size and stability. -
PublicationAnalysis on silica and graphene nanomaterials obtained from rice straw for antimicrobial potential( 2024-06)
; ;N. H. A Jalil ; ; ; ; ; ; ; ;Nur Hulwani Ibrahim ; ;Nadiya Akmal BaharumThis study focuses on the encapsulation of silica and graphene nanoparticles and their potential applications. The encapsulation enhances the properties and effectiveness of these nanoparticles, with silica providing stability and graphene contributing to high surface area and electrical conductivity. Characterization of silica-graphene nanoparticles was conducted using various techniques including High Power Microscope (HPM), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and 3D Nano Profiler. The antimicrobial activity of silica, graphene, and silica-graphene nanoparticles was evaluated using a disc diffusion assay against E. coli and B. subtilis at varying concentrations. Results showed significant antimicrobial activity, with the inhibition zone being directly proportional to the concentration. Silica-graphene nanoparticles demonstrated higher efficacy against E. coli compared to B. subtilis, attributed to differences in cell wall structure. Statistical analysis using ANOVA confirmed significant differences in antimicrobial activity among the tested components. -
PublicationModular architecture of a non-contact pinch actuation micropump( 2012)
;Pei Song Chee ;Rashidah Arsat ; ; ;Ruzairi Abdul RahimPei Ling LeowThis paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB) as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA). The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments) and a nominal frequency range (0–80 Hz, with 10 Hz per step increments). The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz. -
PublicationAluminium interdigitated electrode with 5.0 μm gap for electrolytic scooting( 2024-06)
; ; ; ; ;Ismail Saad ; ; ; ;G. Yashni ;Nur Hulwani Ibrahim ;N. ParimonM. F. H. RaniThe goal of the research project is to design, fabricate, and characterize an extremely sensitive biosensor for use in healthcare. Using AutoCAD software, a novel IDE pattern with a 5 μm finger gap was created. Conventional photolithography and regular CMOS technology were used in the fabrication process. A 3D nano profiler, scanning electron microscopy (SEM), high-power microscopy (HPM), and low-power microscopy (LPM) were used to physically characterize the manufactured IDE. Chemical testing was done using several pH buffer solutions, and electrical validation was performed using I-V measurements. The Al IDE was produced, with a tolerance of 0.1 μm between the fabricated IDEs and the design mask. Electrical measurements verified the flawless fabrication of the IDE, and the device's repeatability was validated by the outcomes of comparable IDE samples. For each pH buffer solution, a modest additional volume of 2 μl was used to quantitatively detect slight current fluctuations in the microampere range. Through pH calibration for advanced applications in the realm of chemical sensors using an amperometric method, this research study has verified the chemical behavior of the IDE. -
PublicationInsight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy( 2020-01-01)
;Dahham O.S. ;Hamzah R. ;Abu Bakar M. ;Zulkepli N.N. ;Alakrach A.M. ; ;Omar M.F. ;Al-rashdi A.A.The ring-opening reactions (ROR) of epoxide groups in epoxidized natural rubber/titania (ENR-50/TiO2) hybrid in potassium hydroxide/isopropanol medium were examined using NMR spectroscopy and supported by the FTIR technique. The thermal behaviour of the hybrid was also studied using TG/DTG and DSC analyses. The 1H NMR results suggested that 16.82% of ROR occurred in the hybrid, while the 13C NMR results exhibited five new peaks at δ 19.5, 71.0, 73.7, 91.7 and 94.4 ppm in the hybrid. 2D NMR, such as HMQC, HMBC and COSY techniques, further scrutinized these assignments. The FTIR spectrum exhibited Ti-O-C characteristics via the peak at 1028 cm−1. The TG/DTG results showed four steps of thermal degradation at 44–148, 219–309, 331–489 and 629–810 °C due to the existence of Ti moieties along with a polymer chain mixture (intact and ring-opened epoxide groups) of ENR-50, which in turn led to an increase in the Tg value of the hybrid to 27 °C compared to that of purified ENR-50 at −17.72 °C.2 -
PublicationComparative analysis on aluminium interdigitated electrode surface influence of ionic strength and electrolytes changes( 2024-06)
;Hussaini Adam ; ; ;Makram A. Fakhri ;Evan T. SalimThe field of generating surface thin films in sensing applications is emerging, and the incorporation of thin film technology into sensor development for enhanced sensing is becoming increasingly significant in various industries such as healthcare, environmental monitoring, and food safety. However, in order to achieve higher specificity in biosensing, advances in nanomaterial biofunctionalization are crucial. This research focuses on the fabrication and characterization of nanobiosensors with surface modification using two different sensing materials: zinc oxide and gold nanorod nanocomposites. The aim of this study was to enhance the sensing capabilities of nanobiosensors by incorporating surface modification with different sensing materials. The fabrication of nanobiosensors involved using silicon as the base material and conventional photolithography to fabricate aluminium interdigitated electrodes with three different structures and gap sizes. AutoCAD software was utilized to create three different photo masks with varying gap sizes. Physical characterization of the fabricated ALIDEs was conducted using atomic force microscope, high power microscope, scanning electron microscope, and 3D-profilormeter. The electrical characterization of the ALIDEs was performed using a Keithley 6487 picoammeter. I-V measurements were conducted on bare ALIDEs as well as surface modified ALIDEs with zinc oxide and gold nanorod. I-V measurements were also performed for pH scouting. The I-V measurements on bare ALIDEs revealed that ALIDEs modified with gold nanorod conducted the least current compared to ALIDEs modified with zinc oxide. Furthermore, the ALIDEs modified with gold nanorod were found to be stable under various electrolytes environments after undergoing pH scouting.2 13 -
PublicationNanowires vibration properties( 2024-03-21)
; ; ;Muhammad Nur Afnan UdaThe vibration properties and the mechanical characteristic are important for the stability of electronics devices, particularly for Nano devices with high potential application. Silicon Nanowire show different properties from the corresponding bulk silicon. The understanding of its behaviour with reliable theoretical model explain the relation between size effect of the nanowire and the vibration frequency is significant to reveal the mechanical behaviour of the device is very important. Thus, this study, present the effect of small diameter of Silicon Nanowires on Its Vibration Properties is established based on the lattice parameters and the binding energy change of silicon nanowire based on first principles calculations through Abinit. Atomic interaction of the SiNWs obtained based on the density functional theory. It was observed that the atomic interaction energy as result of electromechanically induced pressure due -hole pair in which electron (e-) was reductive, and hole (h+) was oxidative. The hole (h+) reacted with e- in the second nanowire, generating free radicals (e-), superoxide anion and perhydroxyl radicals which create phonon group velocity this create vibration. Due to the excessive energy of process the temperature rises and alters the atomic cubic dimensions in turn affect its elastic properties. The nanowire compared with with bulk silicon exhibit high higher modulus, this as result of damped behaviour of the nanowire which is due to the high frequency vibration of silicon atoms at the edge of SiNWs and its Debye length is shorter. As the wire diameter decrease effect of the atomic vibration is reduced.2 -
PublicationMolecular-Imprinting Assisted Polydopamine-Aptasensor On Carbon and Gold Nanomaterials Construct for The Haemophilia B Biomarker Detection( 2024-06-01)
;Krishnan H. ; ; ;Fakhri M.A. ;Salim E.T.Patil N.The study presents a comprehensive approach for enhancing the performance of a spiral micro-interdigitated electrode (spiral-μIDE) sensor for the detection of FIX protein. Electropolymerization using dopamine resulted in a molecular-imprinted polymer (polyDOP-μIDE-MIP) layer, which encapsulated the aptamer-FIX complex and was later leached to create cavities. Cyclic and linear-sweep voltammetry techniques were utilized for the MIP development and rebinding assessment. Linear sweep voltammetry demonstrated a linear relationship between FIX concentration and peak current reduction, with a limit of detection (LOD) of 0.250 picomolar. The sensor's sensitivity was determined as 2.613E-10 A.fM-1.µm-2. This work highlights the importance of nanomaterials integration, and electropolymerization in improving sensor performance. The integration of carbon and gold nanomaterials and the use of molecular imprinting contribute to the sensor's enhanced sensitivity and selective detection of FIX protein.1 13