Options
Subash Chandra Bose Gopinath
Preferred name
Subash Chandra Bose Gopinath
Official Name
Subash Chandra Bose, Gopinath
Alternative Name
Gopinath, S.
Gopinath, S. C.B
Subash Gopinath, C. B.
Subash, Gopinath
Subash C. B. Gopinath
Main Affiliation
Scopus Author ID
7006558013
Researcher ID
D-2953-2015
Now showing
1 - 10 of 314
-
PublicationImpedimetric transduction from a single-step thin film nanoporous aluminum oxide as a DNA sensing electrode( 2024-02-01)
;Shamsuddin S.A. ;Jasni I. ;Ibau C.A two-step anodization process has been widely used to grow a perfectly arranged Anodic Aluminum Oxide (AAO) nanoporous with high regularity and circularity. However, this method requires more time and electricity cost since the second step anodization will be conducted more than a couple of hours up to 24 h to obtain a perfect hexagonally arranged AAO. Besides, the usage of toxic chromic acid to remove the rough surface after the first anodization is not recommended. To solve this issue, a single-step of anodization method to grow AAO at 15 °C in 0.3 M of oxalic acid at 40 V for 1 h has been proposed. In this study, the growth AAO thin film will be tested as a DNA biosensor electrode. Prior to that, instead of using toxic chemicals, couple of drops of phosphoric acid solutions were used to treat the rough, uneven surfaces by promoting hydroxyl groups while at the same time widening and revealed the underneath pores. The AAO thin film is ready for the next step of surface modification without a second anodization step. Surface chemical functionalization using 3-aminopropyl-triethoxysilane (APTES) and glutaraldehyde is performed to immobilize the aminated-ssDNA probe on the surface. The electrochemical impedance technique is employed to monitor the changes in each layer of surface modifications. The charged transfer resistance (Rct) values are linearly increased with each new additional layer on the AAO surfaces during each step of surface modification and with the increase in ssDNA complementary target concentrations (10 fM-10 μM). From the performance test, the single-step AAO thin film electrode has shown great results in functioning as a DNA biosensor through a selectivity test. It has the capability to differentiate the complementary sequences from the single mismatched target with 3-fold. -
PublicationExploring antioxidant and antidiabetic potential of Mutingia calabura (Kerukupsiam) leaf extract: In vitro analysis and molecular docking study( 2024-01-01)
;Prammakumar N.K. ;Ahmad A.A. ;Bakar A.R.A. ;Musa H.Antioxidant activity and antihyperglycemic constituents and of traditional medicinal plants are currently the preferred therapeutic means of treatment and management of diabetes because of the undesired adverse effect of synthetic drugs. Muntingia calabura (Kerukupsiam) leaves and other parts are considered as alternative natural sources of treatment for diabetes. Ultrasonic assisted extraction is a novel approach for extraction of phytoconstituents which gives high extraction yield of bioactive compounds. However, there has been no published information presently on the use of ethanol ultrasonic assisted extraction method for assessment of antioxidant and antidiabetic activities of M. calabura leaves. Hence, the current study aims to evaluate the in vitro antioxidant and antidiabetic activities of M. calabura leave extract. IC50 analysis was done to determine theinhibitory concentration and the results obtained from 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay showed IC50 of gallic acid to be 1.0 µg/ml, which is lower than M. calabura leaves extract at 2.54 µg/ml, indicating that only small concentration of gallic acid was required to inhibit the free radicals at 50 %. However, IC50 analysis for amylase inhibition showed that M. calabura extract had 44.39 µg/ml antidiabetic activity compared to acarbose with 57.1 µg/ml activity. This indicates that M. calabura leaves extract has a better inhibition on amylase activity compared to the acarbose which is a synthetic drug. Further still, in silico study was carried out and the molecular docking result of eight ligands against amylase indicates quercetin had the least binding free energy of −9.1 kcal/mol, indicating the strongest interaction. Using Lineweaver-Burk plot, the results showed a competitive inhibition, hence, it was justified that M. calabura has the potential to manage diabetes and other diseases related to free radicals. -
PublicationFunctionalized carbon nanotube - modified ELISA for early detection of heart attack( 2023-12)
;Emily M. Y. Chow ;M. KashifA warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique. -
PublicationImmuno-probed graphene nanoplatelets on electrolyte-gated field-effect transistor for stable cortisol quantification in serum( 2020-12-01)
;Nur Nasyifa M.M. ;Abdul Halim N.H. ;Zainol Abidin A.S. ;Mohd Faudzi F.N. ;Ahmad N.A. ;Lockman Z. ;Rezek B. ;Kromka A.Physiological and emotional stress affects the regulation of cortisol secretion, a routine process in circadian rhythm. Regular monitoring of cortisol level as a biomarker in the blood stream becomes vital to determine cortisol-related diseases. This study reports immuno-probed graphene nanoplatelets on electrolyte-gated field-effect transistor (EGFET) biosensor for cortisol determination in human serum. Solution-processed graphene nanoplatelets were evidenced on the surface by Raman spectroscopy analysis and utilized as the transducing element on the field-effect transistor. Further, confirmed the binding events of the antibody on graphene nanoplatelets using X-Ray Photoelectron Spectroscopy and characterized the electrostatic gating effect of cortisol and intermediate functionalization on graphene nanoplatelets-EGFET. The biosensor exhibited good sensitivity of 72.30 µA.(g/mL)−1 in a linear range between 1.00 pg/mL to 10.00 ng/mL, with a limit of detection (LOD) of 0.85 pg/mL. Confirmation with binding events on the biosensor was done using the relevant molecules, progesterone, cortisone, and corticosterone, and found to be selective towards cortisol. Cortisol was also successfully detected with interference by the human serum, suggesting the capability of graphene nanoplatelets-EGFET sensor for determining cortisol in a complex matrix. -
PublicationFabrication of active food packaging based on PLA/Chitosan/CNC-containing Coleus aromaticus essential oil: application to Harumanis mango( 2023-12-01)
;Hasnida Raja Hashim R. ;Fong Y.Y. ;Pareek S. ;Makhtar M.M.Z.This study aimed to determine the effect of Coleus aromaticus essential oil (CAEO) on the properties of an active film based on polylactic acid (PLA), chitosan (Cs), and cellulose nanocrystal (CNC) in fruit packaging. The films were fabricated via solvent casting technique. The obtained films’ antimicrobial, antioxidant, microstructural, and mechanical properties were studied. Mechanical properties state how adding essentials oil into film improves the elongation breaks significantly (p < 0.05) by 5.3 and 6.1%, respectively, with the addition of 0.4 wt% and 0.8 wt% CAEO which reflets its flexibility. The antioxidant activity of biopolymer film increased significantly (p < 0.05), with antioxidant values ranging from 6.50 to 57.50% with the elevation of CAEO. The inhibitory impact of the film against pathogenic fungus was evaluated in vitro and in vivo by comparing the film with different concentrations of essential oil (EO), as well as the control and chemical fungicide. Disc diffusion was utilised to test mycelial growth suppression, and the film containing 1.2 wt% EO produced the best results. The biofilm containing 1.2 wt% EO successfully reduced illness incidence in vivo with damaged mango. Scanning Electron Microscopy and Transmission Electron Microscopy imaging were used to observe the incorporation of CAEO in the matrix of the film. All Fourier-Transform Infrared spectra of PLA/Cs/CNC and EO blends exhibited the characteristic bands of PLA-based materials. The results indicate that the PLA/Cs/CNC/CAEO films provide a new way to improve microbial safety and extend the shelf life of mango fruit and have the potential for replacement of petroleum-based plastic for fruit packaging applications at the industrial level. -
PublicationStudy on characterization of bio-oil derived from sugarcane bagasse (Saccharum barberi) for application as biofuel( 2022-04-01)
;Ahmad S.F.K. ;Isa K.M.Lignocellulosic biomass especially, sugarcane bagasse Saccharum barberi sp., appears to be a more suitable material for partial substitution of transport fuel (diesel) than Saccharum officinarum sp., due to its structural similarity to transport fuel (diesel). Besides that, less research has been implemented on this type of species. Bio-oil can be implemented as biodiesel by processing it further using chemical reactions such as hydrodeoxygenation and cracking with zeolite catalyst. Hence, the purpose of this study is to determine the compatibility of pyrolytic bio-oil produced from Saccharum barberi sp. in comparison with S. officinarum sp. for use as transport fuel (diesel) in automotive applications. This purpose can be accomplished by comparing the oil’s bio-physiochemical properties for both species. The experiment is conducted on a bench-scale on which bio-oil of Saccharum barberi sp. is secured from the catalytic pyrolysis process at a temperature of 500°C and heating rate of 50°C/min with the addition of ZSM-Zeolite catalyst. Thermogravimetric analysis of Saccharum barberi sp. reveals that cellulose is more reactive than lignin, evidenced by the high percentage of weight loss at temperatures ranging from 251°C to 390°C. The high contents of carbon (40.7%) and hydrogen (6.50%), as well as slight traces of sulphur (0.08%) and nitrogen (0.85%), in bio-oil (Saccharum barberi sp.) indicate that it is conceivable to be partially used for replacement in biofuel production. Overall physiochemical properties reveal that Saccharum barberi sp. shows more potential than S. officinarum sp. Gas chromatography–mass spectrometry analysis reveals that bio-oil consists of high amounts of aromatic hydrocarbon (26.2%), phenol (14.8%) and furfural (13.0%) in comparison to S. officinarum sp. -
Publication3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination( 2020-11-01)
;Subramani I.G. ;Perumal V. ;Mohamed N.M. ;Joshi N. ;Ovinis M.Sze L.L.Recently, non-faradaic electrochemical impedimetric (nfEIS) has been identified as a dynamic and robust method for bio-determining. However, the success of a nfEIS approach largely depends on its sensing layer architecture. In this study, the use of a Glutaraldehyde (GA) crosslinked copper (Cu) – bovine serum albumin (BSA) hybrid nanoflower with three-dimensional nanoporous architecture for the sensing layer was investigated. The nanoflower morphology changes were observed under FESEM, revealing loosely interlaced nanoflower into a tightly interlaced, highly porous structure upon GA crosslinking. This nanoflower was hybridized to immobilize aminated-DNA probe on the transducer surface and detect the target TB DNA in their natural redox-free environment. FTIR and XPS characterization showed distinct peaks at 950–1100 cm−1 (P-O, P=O bonds from nanoflower and DNA backbone) and 286.48 eV (interaction between BSA and aminated DNA), respectively, validating the successful DNA probe immobilization on the nanoflower surface. Furthermore, impedimetric sensing in a redox-free environment showed that the developed TB biosensor present has a detection limit (LOD) of 60 pM with a (linear) range from 1 pM to 1 µM with good reproducibility. This redox-free non-faradaic EIS offers excellent biosensing potential and may be extended for diagnosing other biomarkers in clinical practice. -
PublicationNanodiamond conjugated SARS-CoV-2 spike protein: electrochemical impedance immunosensing on a gold microelectrode( 2022-06-01)
;Ramanathan S. ;Hilmi Ismail Z.Subramaniam S.A promising immunosensing strategy in diagnosing SARS-CoV-2 is proposed using a 10-µm gap-sized gold interdigitated electrode (AuIDE) to target the surface spike protein (SP). The microelectrode surface was modified by (3-glycidyloxypropyl) trimethoxysilane to enforce the epoxy matrix, which facilitates the immobilization of the anti-SP antibody. The immunosensing performance was evaluated by integrating a nanosized (~ 10 nm) diamond-complexed SP as a target. The proposed immunoassay was quantitatively evaluated through electrochemical impedance spectroscopy (EIS) with the swept frequency from 0.1 to 1 MHz using a 100 mVRMSAC voltage supply. The immunoassay performed without diamond integration showed low sensitivity, with the lowest SP concentration measured at 1 pM at a determination coefficient of R2 = 0.9681. In contrast, the nanodiamond-conjugated SP on the immunosensor showed excellent sensitivity with a determination coefficient of R2 = 0.986. SP detection with a nanodiamond-conjugated target on AuIDE reached the low limit of detection at 189 fM in a linear detection range from 250 to 8000 fM. The specificity of the developed immunosensor was evaluated by interacting influenza-hemagglutinin and SARS-CoV-2-nucleocapsid protein with anti-SP. In addition, the authentic interaction of SP and anti-SP was validated by enzyme-linked immunosorbent assay. Graphical abstract: [Figure not available: see fulltext.]. -
PublicationNanocrystalline diamond electrolyte-gates in field effect transistor for a prolific aptasensing HIV-1 tat on hydrogen-terminated surface( 2020-01-01)
;Ahmad N.A. ;Rahim R.A. ;Rezek B. ;Kromka A. ;Ismail N.S. ;Izak T. ;Prochazka V. ;Faudzi F.N.M. ;Abidin A.S.Z.Maidizn N.N.M.Nanocrystalline diamonds have recently gained great attention to circumvent the current hurdles, with their appealing properties such as high-surface-area to volume ratio, lowbackground current, wide potential window, biocompatibility, and chemical stability. The nanocrystalline diamonds electrolyte-gated field-effect transistor (NCD-EGFET) can operate directly in solution without involving gate oxides in bringing the hydrogen-tethered moieties and facilitates the p-type surface conductivity. This research investigated on Trans-activator of transcription (Tat) protein; a powerful viral gene activator that plays a pivotal role in the primary stage of the human immunodeficiency virus type 1 (HIV-1) replication. Dosedependent interactions of HIV-1 Tat on NCD-EGFET-based RNA aptamer sensing surface were monitored and attained the detection down to 10 fM. The linear regression curve with 3σ estimation professed the sensitivity range to be 31.213 mV/log10 [Tat Concentration]M and the limit of detection of 6.18 fM. The selectivity analysis of NCD-EGFET was conducted with different proteins from HIV (Nef and p24) and Bovine Serum Albumin. Furthermore, to practice in the clinical application, HIV-1 Tat was spiked into the human blood serum and it displayed the genuine non-fouling interaction with the aptamer. The attained highperformance signal enhancement with nanocrystalline diamond-biosensing aids to circumvent the issues in the current diagnosis. -
PublicationIsolation, screening and optimization of alkaliphilic cellulolytic fungi for production of cellulase( 2024-01-01)
;Zainuddin N. ;Makhtar M.M.Z. ;Gunny A.A.N. ;Ahmad A.A. ;Pusphanathan K. ;Siddiqui M.R. ;Alam M.Rafatullah M.This study concerns with the production and partial characterization of alkaline cellulase from alkaliphilic cellulolytic (AC) fungi isolated fromsoil in Perlis, Malaysia. The best fungi strain was selected on the basis of producing the highest cellulase at high pH conditions. Cellulase from the selected fungi strain was further characterized under saccharification but varies in operating parameters. Finally, the kinetic model describing the growth of the AC fungi strain was studied by employing the logistic model. Among the tested fungi strains, Basidiomycetes strain (BK1) showed high potentiality for the production of maximum alkaline cellulase production at pH 9 after 72 h of incubation at 30°C containing 6 g·L-1 carboxyl methyl cellulose. The saccharification process showed that the enzyme favour high alkaline condition and proves thermotolerant properties, while 15% (v/v) enzyme loading and 1% substrate concentration recorded the highest glucose production at about 1.2-1.3 mg·mL-1. The novelty of the study is to identify and optimize a unique indigenous fungi that emit alkaliphilic cellulase as alternative usage in biotechnology industries due to its capacity to adapt to the extreme conditions of specific industrial processes. There are revolutionary options for use in biotechnological businesses that involve high pH and therefore have substantial biotechnological promise.