Options
Ahmad Radi Wan Yaakub
Preferred name
Ahmad Radi Wan Yaakub
Official Name
Ahmad Radi, Wan Yaakub
Alternative Name
Wan Yaakub, Ahmad Radi
Main Affiliation
Scopus Author ID
57221283601
Now showing
1 - 3 of 3
-
PublicationDiagnosing metabolic diseases by nanoparticle immobilization( 2020-01-01)
;Nadzirah S. ;Muhammad Nur Uda ;Isa A.M.Metabolic disease is a group of conditions that expand the risk of heart disease, stroke, and type 2 diabetes. High blood sugar, blood pressure, excess body fat around the waist, and abnormal cholesterol or triglyceride levels are included in this kind of metabolic disease that seems dangerous to human beings. The development of metabolic disease happened when the organs, such as the liver and pancreas did not function properly and triggered metabolic disease. Metabolic diseases happen at the point when irregular compound responses in the human body can modify the typical metabolic procedures. Metabolic diseases can be defined as an inherited single gene, mostly autosomal recessive. The principal classes of metabolic diseases include metabolic brain diseases, calcium metabolism disorder, acid-base imbalance, and glucose metabolism disorders. Diagnosing metabolic diseases was tedious and depending on which type of disease was involved, and currently, by using DNA tests, we can identify the disease but it takes several hours and only a professional person in charge can analyze the result. Advances in diagnosing metabolic diseases by nanoparticle immobilization establish a promising exploration area with favorable impacts on the treatment of diseases. Nanotechnology based on nanoparticle implementation was useful for the metabolic disorder diagnosis to prevent the disease from going viral to develop. Biosensor based on nanoparticles has been applied in several detections including metabolic illnesses to improve accessible analytical methods. Point-of-care (POC) sensor devices have been developed for metabolic disease and offer outcomes, quicker, simpler and at a lower cost than conventional methods. It also can be used in remote regions for metabolic diagnosis. In this chapter, different nanoparticle immobilization has been discussed to diagnose metabolic diseases by using it in clinical approach. -
PublicationAnalysis on silica and graphene nanomaterials obtained from rice straw for antimicrobial potential( 2024-06)
;N. H. A Jalil ;Nur Hulwani IbrahimNadiya Akmal BaharumThis study focuses on the encapsulation of silica and graphene nanoparticles and their potential applications. The encapsulation enhances the properties and effectiveness of these nanoparticles, with silica providing stability and graphene contributing to high surface area and electrical conductivity. Characterization of silica-graphene nanoparticles was conducted using various techniques including High Power Microscope (HPM), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and 3D Nano Profiler. The antimicrobial activity of silica, graphene, and silica-graphene nanoparticles was evaluated using a disc diffusion assay against E. coli and B. subtilis at varying concentrations. Results showed significant antimicrobial activity, with the inhibition zone being directly proportional to the concentration. Silica-graphene nanoparticles demonstrated higher efficacy against E. coli compared to B. subtilis, attributed to differences in cell wall structure. Statistical analysis using ANOVA confirmed significant differences in antimicrobial activity among the tested components. -
PublicationCharacterization and anti-bacterial potential of iron oxide nanoparticle processed eco-friendly by plant extract( 2020-11-02)
;Yan L.P. ;Anbu P.This research comprehends iron-oxide nanoparticle (IONP) production, the apparent metallic nanostructure with unique superparamagnetic properties. Durian-rind-extract was utilized to synthesize IONP and the color of reaction mixture becomes dark brown, indicated the formation of IONPs and the peak was observed at ∼330 nm under UV-visible spectroscopy. The morphological observation under high-resolution microscopies has revealed the spherical shape and the average size (∼10 nm) of IONP. The further support was rendered by EDX-analysis showing apparent iron and oxygen peaks. XRD results displayed the crystalline planes with (110) and (300) planes at 2θ of 35.73° and 63.53°, respectively. XPS-data has clearly demonstrated the presence of Fe2P and O1s peaks. The IONPs were successfully capped by the polyphenol compounds from durian-rind-extract as evidenced by the representative peaks between 1633 and 595 cm−1 from FTIR analysis. The antimicrobial potentials of IONPs were evidenced by the disk-diffusion assay. The obtained results have abundant attention and being actively explored owing to their beneficial applications.