Options
Nor Azizah Parmin
Preferred name
Nor Azizah Parmin
Official Name
Nor Azizah, Parmin
Alternative Name
Parmin, N. A.
Parmin, Nor Azizah
Parmin, Nor A.
Main Affiliation
Scopus Author ID
57195835481
Researcher ID
S-6303-2019
Now showing
1 - 10 of 54
-
PublicationGold Nanoparticles Enhanced Electrochemical Impedance Sensor (EIS) for Human Papillomavirus (HPV) 16 Detection E6 region( 2020-07-09)
;Amrul Muhadi A.S. ; ; ; ;Rejali Z. ;Afzan A. ;Muhammad Nur Afnan Uda ;Hong V.C.The persistent infection by high risk HPV is a necessary but not sufficient cause of this cancer which develops over a long period through precursor lesions which can be detected by electrochemical impedance sensor. The HPV driven molecular mechanisms underlying the development of cervical lesions have provided a number of potential biomarkers for both diagnostic and prognostic use in the clinical management of women with HPV related cervical disease and these biomarkers can also be used to increase the positive predictive value of current methods. The most influential methods for the detection and identification of HPV using gold nanoparticle (GNP) included electrochemical impedance sensor will visit their sensitivity, selectivity and characteristic detection on synthetic target which are complement of the DNA, non-complement of the DNA and mismatch of the DNA. In difference concentration of synthetic target, which stage can get the exactly value to determine the HPV in strain 16 was evaluated in this research studies. -
PublicationTitanium dioxide–mediated resistive nanobiosensor for E. coli O157:H7( 2020-04-01)
;Nadzirah S. ; ; ; ;Hamzah A.A. ;Yu H.W.Dee C.F.A titanium dioxide nanoparticle (TiO2 NP)–mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I–V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10−11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 μL). [Figure not available: see fulltext.]. -
PublicationThe study of sensing elements parameters optimization for developed biosensor of SARS-CoV-2 detection( 2023-04)
;Fatin Syakirah Halim ; ; ; ; ;Iffah Izzati Zakaria ;Wei Chern AngNurfareezah Nadhirah JaaparNew advancements in developing sensitive and selective biosensors have demonstrated outstanding potential for Deoxyribonucleic Acid (DNA biosensors). The detection mode of DNA biosensors primary depends on a particular DNA hybridization that precisely occurs on the surface of the physical transducer that can only be detected using high-performance assays due to slight current changes. The analytical performance (sensitivity) of the DNA biosensor is conclusively rely on the confluence constructing of the sensing surface, which must be optimized. Thus, in this study, the sensing elements of the developed biosensors were optimized for detecting RNA of SARS-CoV-2. This optimization included concentration of nanomaterials (carbon quantum dots), probe density (concentration of DNA probe) and concentration of linker (APTES). It was observed that 0.15 % V/V of concentration CQD, 0.1μM of DNA probe and 36% V/V of APTES were the optimum parameters which provided their maximum response during electrical measurements and increased the sensitivity of the developed biosensor for SARS-CoV-2 detection -
PublicationPotentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors( 2022-01-01)
; ; ; ;Nadzirah S. ;Salimi M.N. ; ; ;Muhammad Nur Afnan Uda ;Rozi S.K.M. ;Rejali Z. ;Afzan A. ;Azan M.I.A. ;Yaakub A.R.W. ;Hamzah A.A.Dee C.F.The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer. -
PublicationProduction and characterization of graphene from carbonaceous rice straw by cost-effect extraction( 2021-05-01)
; ; ; ;Halim N.H. ; ;Muhammad Nur Afnan UdaAnbu P.This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with –C=C– and O–H stretching at peaks of 1644 cm−1 and 3435 cm−1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 °C, with a final reduction of ~ 11%. -
PublicationVoltammetric DNA Biosensor for Human Papillomavirus (HPV) Strain 18 Detection( 2020-07-09)
;Mhd Akhir M.A. ; ; ; ;Rejali Z. ;Afzan A. ; ;Muhammad Nur Afnan UdaThis research was developed to focus on the study of the voltammetric DNA biosensor for the detection of HPV strain 18. In this research, electrical DNA biosensor was expected to detect HPV strain 18 more efficiently by using electrical characterization. In this project, device inspection was conducted to make sure the functional of the gold interdigitated electrode (IDE) by using Scanning Electron Microscope (SEM). 3-Aminopropyl Triethoxysilane (APTES) solution was used for the process of surface modification to form the amine group on the surface of the device to facilitate the attachment of the DNA probe. In this project, synthetic DNA sample and DNA from the saliva of several Biosystems Engineering students were used as the target DNA. The current-voltage (I-V) electrical characterization was conducted to detect the presence of HPV strain 18 in both DNA samples. As the results, perfect alignment between the electrodes on the IDE was detected under SEM. Surface modification of the biosensor successfully conducted which is the covalent bond between APTES and DNA probe increase the electrical. Synthetic DNA shows the presence of HPV strain 18 while there was no HPV strain 18 detected in the DNA from saliva samples. -
PublicationEffect of Microwave Power and Clamping Pressure on the Microwave Welding of Polypropylene Using Silicon Carbide Nanowhiskers as Microwave Susceptor( 2022-01-01)
;Foong P.Y. ; ;Lim B.Y. ;Teh P.L. ; ; ; ; ;Low F.W. ;Mahalingam S. ;Manap A. ;Due to their excellent dielectric properties and the rapid response to microwave irradiation, silicon carbide nanowhiskers (SiCNWs) were employed as microwave susceptor in this study to absorb microwave and locally melt the surrounding polypropylene (PP) substrates for the joining of PP substrates. Complete welded joint is formed after the melted PP was cooled and resolidified. Other than microwave susceptor, SiCNWs also acted as the nanofillers in strengthening the welded joint through the formation of SiCNWs reinforced PP nanocomposite at the interface of PP substrates. Besides, the effect of microwave power on the microwave welding of PP substrates using SiCNWs as susceptor was studied and reported. It was found that the tensile strength and modulus of elasticity of the welded joint improved as microwave power increased. However, it deteriorates the flexibility of the welded joint as high stiffness SiCNWs were incorporated deeper into the PP matrix which restricted the PP chain mobility. Aside from microwave power, clamping pressure is also critical in determining the mechanical properties of a welded joint. When compared to unclamped welded joint, the tensile strength, modulus of elasticity and flexibility of welded joint subjected to clamping pressure improved drastically. Moreover, the tensile strength of welded joint increased when the clamping pressure was increased from P1 to P3, but decreased when the clamping pressure was further increased to P4 due to the occurrence of flashing at welded joint. The formation mechanism of SiCNWs reinforced PP welded joint was also proposed in this study. Compared to conventional welding, this welding process is easy, straightforward and is able to produce welded joint with outstanding mechanical properties via precise controlling of the processing parameters. Thus, microwave welding is thought to offer an option for the joining of thermoplastics and other applications. -
PublicationMicroRNA of N-region from SARS-CoV-2: Potential sensing components for biosensor development( 2022-08-01)
;Halim F.S. ; ; ; ;Dahalan F.A. ;Zakaria I.I. ;Ang W.C.Jaapar N.F.An oligonucleotide DNA probe has been developed for the application in the DNA electrochemical biosensor for the early diagnosis of coronavirus disease (COVID-19). Here, the virus microRNA from the N-gene of severe acute respiratory syndrome-2 (SARS-CoV-2) was used for the first time as a specific target for detecting the virus and became a framework for developing the complementary DNA probe. The sequence analysis of the virus microRNA was carried out using bioinformatics tools including basic local alignment search tools, multiple sequence alignment from CLUSTLW, microRNA database (miRbase), microRNA target database, and gene analysis. Cross-validation of distinct strains of coronavirus and human microRNA sequences was completed to validate the percentage of identical and consent regions. The percent identity parameter from the bioinformatics tools revealed the virus microRNAs’ sequence has a 100% match with the genome of SARS-CoV-2 compared with other coronavirus strains, hence improving the selectivity of the complementary DNA probe. The 30 mer with 53.0% GC content of complementary DNA probe 5′ GCC TGA GTT GAG TCA GCA CTG CTC ATG GAT 3′ was designed and could be used as a bioreceptor for the biosensor development in the clinical and environmental diagnosis of COVID-19. -
PublicationAnalysis on silica and graphene nanomaterials obtained from rice straw for antimicrobial potential( 2024-06)
; ;N. H. A Jalil ; ; ; ; ; ; ; ;Nur Hulwani Ibrahim ; ;Nadiya Akmal BaharumThis study focuses on the encapsulation of silica and graphene nanoparticles and their potential applications. The encapsulation enhances the properties and effectiveness of these nanoparticles, with silica providing stability and graphene contributing to high surface area and electrical conductivity. Characterization of silica-graphene nanoparticles was conducted using various techniques including High Power Microscope (HPM), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and 3D Nano Profiler. The antimicrobial activity of silica, graphene, and silica-graphene nanoparticles was evaluated using a disc diffusion assay against E. coli and B. subtilis at varying concentrations. Results showed significant antimicrobial activity, with the inhibition zone being directly proportional to the concentration. Silica-graphene nanoparticles demonstrated higher efficacy against E. coli compared to B. subtilis, attributed to differences in cell wall structure. Statistical analysis using ANOVA confirmed significant differences in antimicrobial activity among the tested components. -
PublicationNovelty Studies on Amorphous Silica Nanoparticle Production from Rice Straw Ash( 2020-07-09)
; ; ; ;Muhammad Nur Afnan Uda ; ;Halim N.H.Anbu P.Turning waste product into the valuable resources is the best alternative way to overcome the waste management issue. Generally, rice is grown and planted twice a year where a lot of rice by-products have been produced after harvesting the matured paddy. Rice straw is one of turning waste products into the valuable resources and to manage the environmental issues. Generally, rice is grown and planted twice a year where a lot of rice by-products are produced. Rices straw is one of the rice by-products, generated roughly 0.7-1.4 kg per kilograms of harvested milled rice. With the nanotechnological approach, silica particles at nano-size can be produced using the incinerated rice straw. In addition to that, this research will report the synthesis, characterization and adsorption analysis towards the heavy metal removal.