Now showing 1 - 6 of 6
  • Publication
    Conductometric immunosensor for specific Escherichia coli O157:H7 detection on chemically funcationalizaed interdigitated aptasensor
    ( 2024)
    Muhammad Nur Afnan Uda
    ;
    Alaa Kamal Yousif Dafhalla
    ;
    Thikra S. Dhahi
    ;
    ; ;
    Asral Bahari ambek
    ;
    ; ;
    Nur Hulwani Ibrahim
    ;
    Escherichia coli O157:H7 is a strain of Escherichia coli known for causing foodborne illness through the consumption of contaminated or raw food. To detect this pathogen, a conductometric immunosensor was developed using a conductometric sensing approach. The sensor was con-structed on an interdigitated electrode and modified with a monoclonal anti-Escherichia coli O157: H7 aptamer. A total of 200 electrode pairs were fabricated and modified to bind to the target molecule replica. The binding replica, acting as the bio-recognizer, was linked to the electrode surface using 3-Aminopropyl triethoxysilane. The sensor exhibited excellent performance, detecting Escherichia coli O157:H7 in a short time frame and demonstrating a wide detection range of 1 fM to 1 nM. Concentrations of Escherichia coli O157:H7 were detected within this range, with a minimum detection limit of 1 fM. This innovative sensor offers simplicity, speed, high sensitivity, selectivity, and the potential for rapid sample processing. The potential of this pro-posed biosensor is particularly beneficial in applications such as drug screening, environmental monitoring, and disease diagnosis, where real-time information on biomolecular interactions is crucial for timely decision-making and where cross-reactivity or interference may compromise the accuracy of the analysis.
  • Publication
    Gold nanoparticles enhanced DNA biosensor based on Silica interdigitated electrodes for detection of Human Papillomavirus
    The increment in cervical cancer cases caused by the genital Human Papillomavirus (HPV) is a major worldwide problem for the women healthcare. In Malaysia, more than 5,000 cervical cancer patients, die from the delay in detecting cancer cells that are spreading to the final stage in 2015. The National Cancer Society of Malaysia (NCSM) reports that more than 11,000 women have been diagnosed with cervical cancer every year, especially young women in the late 30s. Rapid detection methods for the prevention and identification are required to solve the health and safety problems related to this pathogenic virus. Current detection methods require extensive specimen sample preparation and prolonged assay procedures. Thus, this research has focused on developing rapid detection methods, which are capable of sensing these viruses at a higher sensitivity. HPV 16 was used as the standard reference strain for the development of rapid methods. Nanoscaled interdigitated electrodes (IDEs) has been developed for the identification and miniaturizing the size of sensor but have higher performance for the biomedical engineering usage by detecting deoxyribonucleic acid (DNA) of HPV caused cervical cancer. With the conventional lithography (CL) for device fabrication, an electrical biosensor based on gold nanoparticle (GNP) IDE wasconstructed before the addition of 3-aminopropyltriethoxysilane (APTES). The optimized IDE was then employed for the detection of HPV DNA by the introduced two-steps mechanism after the surface modification by APTES. APTES is linking the modified HPV DNA probe with carboxyl group (-COOH) immobilization by covalent binding via amine (-NH2) coupling APTES on the sensing surface based IDE, and DNA hybridization. Surface structure analysis with scanning electron microscopy (SEM) was used to characterize the changes in the surface appearance. Fourier transform infrared (FTIR) spectroscopy analysis was used to assess the attachment procedures. The detection principle works by detecting the changes in the electrical current of IDE, which bridges the source and drain terminal to sense the immobilization of HPV DNA probe and hybridization with target DNA. It was found that the sensor showed the selectivity for HPV DNA target in a linear range with the concentrations ranges from 1 pM to 1 µM. With this analysis, the sensitivity limit of detection (LOD) was approximately 1 pM and it is comparable with the currently available sensors.In addition, the developed biosensor device was able to discriminate among complementary synthetic target, single mismatch, and non-complementary DNA sequences. A commercial, HCII Hybrid capture based Enzyme-Linked Immunosorbent Assay (ELISA) method for 13 types of high-risk HPV including HPV 16 and 18 wasused as a validation technique for confirming the effectiveness of GNP based IDE electrical biosensor in real samples. The advantage of this sensor is fast detection without labeling application and is useful in identifying the strength of HPV DNA probe binding to HPV target. This electrical biosensor system will be useful for the development of devices with on-site analysis.
  • Publication
    Dielectric properties and microwave absorbing properties of silicon carbide nanoparticles and silicon carbide nanowhiskers
    Silicon carbide (SiC) is well known for their outstanding microwave absorbing properties. SiC nanomaterials (SiCNMs) are expected to have better microwave absorption performance due to their high specific surface area. To date, no study was reported to compare the dielectric properties and microwave absorbing properties of different type of SiCNMs. Therefore, the objective of this paper is to compare the dielectric properties and microwave absorption properties of different types of SiCNMs. In this paper, SiC nanoparticles (SiCNPs) and SiC nanowhiskers (SiCNWs) were characterised using SEM and XRD. In addition, their dielectric properties and microwave absorbing properties were measured using network analyser and transmission line theory. It was found that SiCNWs achieved higher dielectric constant and loss factor which are and εr’ =17.94 and εr″ = 2.64 compared to SiCNPs that only achieved εr’ = 2.83 and εr″ = 0.71. For microwave absorbing properties, SiCNWs and SiCNPs attained minimum reflection loss of -10.41 dB and -6.83 dB at 5.68 GHz and 17.68 GHz, respectively. The minimum reflection loss of SiCNPs and SiCNWs obtained in this study is much lower than the nanometer-SiC reported previously. These results suggested that SiCNWs can be an ideal candidate of microwave susceptors for various microwave applications
  • Publication
    The study of sensing elements parameters optimization for developed Biosensor of SARS-CoV-2 detection
    ( 2023-04)
    Fatin Syakirah Halim
    ;
    ; ; ; ;
    Iffah Izzati Zakaria
    ;
    Wei Chern Ang
    ;
    Nurfareezah Nadhirah Jaapar
    New advancements in developing sensitive and selective biosensors have demonstrated outstanding potential for Deoxyribonucleic Acid (DNA biosensors). The detection mode of DNA biosensors primary depends on a particular DNA hybridization that precisely occurs on the surface of the physical transducer that can only be detected using high-performance assays due to slight current changes. The analytical performance (sensitivity) of the DNA biosensor is conclusively rely on the confluence constructing of the sensing surface, which must be optimized. Thus, in this study, the sensing elements of the developed biosensors were optimized for detecting RNA of SARS-CoV-2. This optimization included concentration of nanomaterials (carbon quantum dots), probe density (concentration of DNA probe) and concentration of linker (APTES). It was observed that 0.15 % V/V of concentration CQD, 0.1µM of DNA probe and 36% V/V of APTES were the optimum parameters which provided their maximum response during electrical measurements and increased the sensitivity of the developed biosensor for SARS-CoV-2 detection
  • Publication
    The study of sensing elements parameters optimization for developed biosensor of SARS-CoV-2 detection
    ( 2023-04)
    Fatin Syakirah Halim
    ;
    ; ; ; ;
    Iffah Izzati Zakaria
    ;
    Wei Chern Ang
    ;
    Nurfareezah Nadhirah Jaapar
    New advancements in developing sensitive and selective biosensors have demonstrated outstanding potential for Deoxyribonucleic Acid (DNA biosensors). The detection mode of DNA biosensors primary depends on a particular DNA hybridization that precisely occurs on the surface of the physical transducer that can only be detected using high-performance assays due to slight current changes. The analytical performance (sensitivity) of the DNA biosensor is conclusively rely on the confluence constructing of the sensing surface, which must be optimized. Thus, in this study, the sensing elements of the developed biosensors were optimized for detecting RNA of SARS-CoV-2. This optimization included concentration of nanomaterials (carbon quantum dots), probe density (concentration of DNA probe) and concentration of linker (APTES). It was observed that 0.15 % V/V of concentration CQD, 0.1μM of DNA probe and 36% V/V of APTES were the optimum parameters which provided their maximum response during electrical measurements and increased the sensitivity of the developed biosensor for SARS-CoV-2 detection
  • Publication
    Facile electrical DNA genosensor for human papillomavirus (HPV 58) for early detection of cervical cancer
    ( 2023-07)
    F. Nadhirah Jaapar
    ;
    ; ; ; ; ;
    Sh. Nadzirah
    ;
    ; ;
    Wei Chern Ang
    ;
    Iffah Izzati Zakaria
    ;
    Zulida Rejali
    ;
    Amilia Afzan
    ;
    Azrul Azlan Hamzah
    ;
    Chang Fu Dee
    ;
    F. Syakirah Halim
    For decades, a Pap smear test has been applied as a conventional method in detecting Human Papillomavirus caused cervical cancer. False-positive results were also recorded while using it as conventional method. Current biosensor such as Hybrid (II) Capture resulted in higher time consumption and cost. s Meanwhile, in this study we provided facile, mini, rapid, highly sensitive, eco-friendly, and cost-effective sensing system focusing on HPV strain 58 (HPV58) in a nano-size lab-on-chip technology genosensor. 30-mer of virus ssDNA designed and analyzed as a probe via bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST) and ClustalW. Nanotechnology-developed colloidal Gold-nanoparticles (AuNPs) are used in the biosensor fabrication to produce high stability and electron efficient transmission during electrical measurement. AuNPs-APTES modified on active sites of IDEs, followed by immobilization of specific probe ssDNA for HPV 58. Hydrogen binding during hybridization with its target produce electrical signals measured by KEITHLEY 2450 (Source Meter). The genosensor validated with different types of targets such as complimentary, non-complementary and single mismatch oligonucleotides. The serial dilution of target concentration has been experimented triplicate (n=3) range from 1fM to 10μM. The slope of calibration curve resulted 2.389E-0 AM-1 with regression coefficient (R2) = 0.97535.