Options
Mohd Fairus Ahmad
Preferred name
Mohd Fairus Ahmad
Official Name
Mohd Fairus , Ahmad
Alternative Name
Shahimin, Mohd Faidz Mohamad
Mohamad Shahimin, M. F.
Main Affiliation
Scopus Author ID
57006554500
Researcher ID
B-9547-2018
Now showing
1 - 10 of 17
-
PublicationProduction of low temperature synthetic graphite( 2023-04)
;Anis Syafiqa Rosman ;Ranjitha NavalanNurul Huda OsmanSynthetic graphite is a material consisting of graphitic carbon which has been obtained by graphitizing a non-graphitic carbon. The growth in demand, particularly in customizing properties for certain usage has brought about research on viable alternative, low-cost, and environmentally pleasant synthetic graphite production. Biomass wastes are amongst appealing carbon precursors which have been broadly checked out as replacement carbon for graphite production. This research aimed to synthesize synthetic graphite from oil palm trunks at low temperatures (500 °C, 400 °C and 300 °C) under controlled conditions to determine the physical properties and properties of the graphite obtained. After the heat treatment process, the obtained samples were then characterized by using XRD, SEM and RAMAN characterizations. Based on SEM and RAMAN characterization, it can be seen that graphite that undergoes a 500 °C pyrolysis process shows the best results compare to graphite that undergoes a pyrolysis process at the temperatures of 300 °C and 400 °C. The graphite flakes and the peaks obtained for 500 °C graphite are obviously present. For XRD characterization, the best samples at 500 °C were chosen to be characterized. From the results, the sample shows slight behavior imitating the commercialized graphite. Hence, from the characterizations of the samples, it can be concluded that the best synthetic graphite produced was from the oil palm trunks heated at 500 ° C -
PublicationA review of visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion( 2022-12)
;Kelvin Voon Yan JieYusran SulaimanDue to the tunable spectrum range and potential application under non-coherent solar irradiation, triplet-triplet annihilation based molecular photon upconversion (TTA-UC) systems represent a compelling study field for a variety of photonic implementations. There were studies on the incorporation of TTA-UC technology with photovoltaic technology, which made it possible to further improve the energy harvest performance through the utilisation of the wasted spectrum. However, many TTA-UC studies are limited to energy upconversion within the visible spectrum range. For photovoltaic cells with a higher band gap, which harvest the higher energy spectrum (UV region), an efficient Vis-to-UV upconversion is preferred. The Vis-to-UV TTA-UC system was first introduced in 2006. Recently, more studies were conducted to discover the Vis-to-UV upconversion system with high quantum efficiency and low excitation intensity such as the nanocrystal sensitizerbased system and the thermally activated delayed fluorescence sensitizer-based system. Recent studies in the solvent system of Vis-to-UV upconversion system had demonstrated the dependence of the couple photostability on the solvent and extended the solvent selection to inorganic solvent. In this review, we are reviewing the research background of the Vis-to-UV TTA-UC system and discussing the current challenges and potential developments in this research area. -
PublicationFabrication of Strontium Titanate thin film with pre-crystallized layer via sol-gel spin coating method( 2022-12)
;Kelvin Voon Yan JieYusran SulaimanThe technique of pre-crystallized layer is introduced in the strontium titanate (STO) thin film fabrication to improve the coating thickness and the crystallinity. The STO thin films were fabricated on glass substrates via the spin coating method with STO precursor solution that was synthesized through the sol-gel process. The characteristics of the thin films were analyzed through X-ray diffraction (XRD) analysis, profilometry, UV-Vis spectra analysis and scanning electron microscopy (SEM) analysis. In the present study, the samples of 20 layers and 25 layers (deposited on the pre-crystallized layer) exhibited better crystallinity as compared with the samples of 5 layers, 10 layers and 15 layers (without the pre-crystallized layer). The samples of 25 layers exhibited the highest film thickness (224 nm), highest absorbance intensity and the highest XRD peak intensity at 32, 40, 47 and 58°, which represent the planes (110), (111), (200) and (210), respectively. The pre-crystallized layer served as the mechanical support for further layer deposition. -
PublicationA study on electrical performance of SiC-based self-switching diode (SSD) as a high voltage high power device( 2023-12)
;N. Z. A. A. Sha’ariA. F. A. RahimThe Self-switching Diodes (SSDs) have been primarily researched and used in low-power device applications for RF detection and harvesting applications. In this paper, we explore the potential of SSDs in high-voltage applications with the usage of Silicon Carbide (SiC) as substrate materials which offers improved efficiency and reduced energy consumption. Optimization in terms of the variation in the interface charges, metal work function, and doping concentration values has been performed by means of a 2D TCAD device simulator. The results showed that the SSD can block up to 600 V of voltage with an optimum interface charge value of 1013 cm-2, making them suitable for higher voltage applications. Furthermore, it also found that the work function of the metal contact affected the forward voltage value, impacting the current flow in the device. Variation in doping concentrations also resulted in higher breakdown voltages and significantly increased forward current, leading to an increased power rating of 27 kW. In conclusion, the usage of 4H-SiC-based SSDs shows a usable potential for high-voltage applications with optimized parameters. The results from this research can facilitate the implementation of SSD in the development of high-power semiconductor devices for various industrial applications. -
PublicationTemperature effects on electrical and structural properties of MEH-PPV/PEIE OLED Device( 2020-06-16)
;Nurul Afiqah Nor IsmailThis paper explores the performance of configuration ITO/MEH-PPV/PEIE/Al OLED under the variations of temperature. The MEH-PPV and MEH-PPV/PEIE thin film were deposited on ITO substrates using spin coating technique with fixed spin speed of 3000 rpm and baked at low temperature ranging from 90 °C to 180 °C, respectively. The surface roughness values for MEH-PPV and MEH-PPV/PEIE films were analysed using AFM with 5 μm ' 5 μm scanning area. The roughness of MEH-PPV thin films were reduced from 2.825 nm to 1.625 nm when temperature increased. Contrary to MEH-PPV/PEIE films where the roughness increased linearly up to 3.397 nm when the temperature increased. The maximum absorption peak spectrum obtained from UV-Visible (UV-Vis) was found at 500 nm to 510 nm when baked temperature were varied. Furthermore, the turn on voltage from J-V characteristics gives no specific pattern across different temperature and agreed with the trend of surface roughness values. The turn-on voltage at T = 150 °C gives the lowest value of 3 V. Overall, the variations of low temperature gives an effects on structural and electrical properties of this OLED configuration. -
PublicationFirst-principles investigation on the impact of copper concentration on zinc telluride as the back contact for cadmium telluride solar cells( 2024-02-01)
;Ahmad N.I. ;Doroody C. ;Rahman K.S. ;Radzwan A. ;ALOthman Z.A. ;Katubi K.M. ;Alzahrani F.M. ;Amin N.Kar Y.B.Cadmium telluride (CdTe) solar cells have attracted a lot of interest in recent years, attributed to their low cost and eco-friendly fabrication technique. However, the back contact is still the key issue for further improvement in device performance due to the work function difference between p-CdTe and metal contacts. In this study, the interatomic characteristics of zinc telluride (ZnTe) and Cu-doped ZnTe (ZnTe:Cu) as a back surface field (BSF) in CdTe structure is investigated using first-principles density functional theory (DFT) to overcome the Schottky barrier in CdTe solar cells. The incorporation of different doping levels of copper (Cu) in ZnTe on an atomic scale, where Zn1−xTe:Cux (x = 0, 2, 4, 6, 8, and 10) as the potential back surface field layers is investigated. The effect of doping concentration on electrical characteristics such as bandgap structure and density of states (DOS) were examined via ab initio with the Hubbard U (DFT + U) correction. The results showed an interesting gradual decrease in the bandgap energy of ZnTe from 2.24 eV to 2.10 eV, 1.98 eV, 1.92 eV, 1.88 eV, and 1.87 eV for the incremented value of Cu content of 3.13%, 6.25%, 9.38%, 12.50%, and 15.63%, respectively. Accordingly, it has been found that controlling of the effective copper doping, i.e., concentration, is crucial for developing efficient back contact junctions for high-efficiency CdTe thin-film solar cells. -
PublicationModification of Photoanode Surface Structure via Image Analysis on Organic Polymer Material based for Dye-Sensitized Solar Cell (DSSC) Applications( 2021-12-01)
;Rosli N. ;Azidin M.A.M. ;Zakaria N.F.In this study, the experiment on the modification of the photoanode with organic polymer material as copolymer template for dye-sensitized solar cell (DSSC) applications has been conducted. The two organic copolymer templates are polystyrene sphere (PS) and poly[2-methoxy-5(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). The modification photoanodes were made using Dr. Blade’s method. These organic copolymer templates were added to improve the surface of the mesoporous titanium dioxide (TiO2) layer, which is used as the main component in DSSC photoanode. The unmodified TiO2 photoanode has poor aggregation and porosity of TiO2. The addition of either MEH-PPV or PS sphere to the photoanode layer was found to affect the surface of mesoporous TiO2 in terms of porosity, particle size distribution and shape. The analysis of the TiO2 modification was conducted using an image analysis processing method via a 2D scanning electron microscope (SEM) image. The image analysis processing method used was the ImageJ program. The DSSC of modified photoanode is fabricated using metal complex dye, Ruthenium (N719) dye. The data collected from the ImageJ program showed that by adding organic copolymer templates into TiO2, the porosity of TiO2 decreased from 45 % to 42 %. From the photovoltaic analysis obtained, the J-V characteristic is recorded with the photoanode of TiO2 mixed with 1.00 wt% MEH-PPV gave the highest efficiency, which is 0.01 % with the following parameters – Voc = 0.43 V, Jsc = 0.17 mA/cm2 and FF = 0.20. Meanwhile, the photoanode of TiO2 mixed with 0.50 wt% PS sphere gave the highest efficiency which is 0.08 % with the following parameters – Voc = 0.39 V, Jsc = 0.86 mA/cm2 and FF = 0.25. -
PublicationThe effect of solvents on the performance of organic light-emitting diodes( 2020-01-08)
;Ismail N.A.N. ;Juhari N.Zakaria N.F.In this paper, we investigate the solvent effect on the performance of surface roughness, absorption spectrum of MEH-PPV thin films and J-V characteristics for MEH-PPV OLED device. The 5 mg emissive layer of poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV was diluted with 1ml toluene and 1 ml different mixture of solvent (80% toluene+20 % chloroform) which gives the concentration of 5 mgml-1 respectively. The surface roughness of MEH-PPV film was reduced to 0.3 nm and the red-shifted maximum peak wavelength value were obtained when mixture solvent was used. However, J-V gives higher turn on voltage ∼17 V for the device used mixture solvent compared to device prepared by toluene solvent. Apparently, the two different combination of aromatic and non-aromatic solvent significantly gives an effect on thin films properties and electrical properties of MEH-PPV OLED device. -
PublicationVisible Light-Assisted Charge Extraction in High-Band-Gap SrTiO3 through the Integration of a Triplet Sensitizer-Emitter Thin Film( 2024-01-22)
;Jie K.V.Y. ;Mohmad A.R. ;Ismail A.M. ;Ramli M.M. ;Sulaiman Y.A challenge in PV designs, including those with an electron transport layer (ETL), is the presence of ‘parasitic absorbers’. These are layers that absorb light without significantly converting it to electrical current, impacting the total external quantum efficiency (EQE). Strontium titanate (STO), a high-band-gap (3.20 eV) perovskite metal oxide, holds promise as an electron transport layer (ETL) for solar energy harvesting. Despite STO’s potential, it primarily operates in the UV spectrum, not fully utilizing the broader light range, and hence can be the source of parasitic absorbers. In this study, we report a significant enhancement in the EQE of STO through the integration of a triplet sensitizer-emitter (TSE) system, designed to upconvert the visible spectrum into UV light and improve the charge extraction from STO. The TSE system uses carbazolyl dicyanobenzene (4CzIPN) as a sensitizer and p-terphenyl (TP) as an emitter. To investigate the EQE of such a system, we fabricate STO as a PV cell. The revised PV cell architecture (ITO/TiO2/STO/TSE/PEDOT:PSS/Al) is a modification of the conventional configurations (ITO/TiO2/STO/PEDOT:PSS/Al). With the TSE thin film, the modified STO PV cell shows better charge extraction under sunlight compared to the standard STO PV cell, indicating that the upconversion process can enhance the hole conductions from STO to PEDOT:PSS through the TSE system. We noted an EQE increase with intense light of λ > 345 nm in thicker TSE layers and a decrease in the EQE under similar light intensity in thinner TSE layers. The Kelvin probe force measurement (KPFM) data showed that the TSE layer receives holes from STO under illumination. Additionally, time-resolved photoluminescence (TRPL) experiments showed that the TSE/STO thin film is able to produce UV emission after irradiation with lower energy light. Then, the EQE variation in thicker TSE layers under intense irradiation can be attributed to the solid-state upconversion, indicating its thickness-dependent performance. These findings underline the strategies for maximizing the utilization of the solar spectrum in PV applications. -
PublicationThe structural and electrical characterization of PEDOT:PSS/MEH-PPV doped with PEIE OLED fabricated using spin coating technique( 2020-01-08)
;Juhari N. ;Shukri N.I.A.This paper investigates the performance of the uniformity and absorption spectrum of MEHPPV+PEIE thin films also the electrical properties for configuration of ITO/PEDOT: PSS/MEH+PEIE/Al. The sample used 0.5 wt % of PEDOT: PSS solution while 5 mgml-1 concentration of MEH-PPV solution was doped with four different concentrations of PEIE with values of 0.1 wt%, 0.3 wt%, 0.5 wt% and 0.7 wt% respectively. The untreated PEDOT: PSS and MEH-PPV+PEIE was deposited using spin coating technique at a fixed spun speed of 3000 rpm to obtain smooth surface roughness thin film. The root mean square (RMS) value, absorption spectrum and current density (A/cm-2) of the PEDOT: PSS and MEH-PPV+PEIE films were analyzed using Atomic Force Microscope (AFM), UV-Visible (UV-Vis) Spectrophotometer and Semiconductor Parametric Analyzer (SPA), respectively. The surface roughness of the films were linearly increased when the dopant concentration increased with the maximum RMS value of ∼4.74 nm. Besides, absorption peak wavelength also was red-shifted from 500 nm to 551 nm under an influence of PEIE dopant concentrations. However, the turn on voltage gives no significant trend when dopant concentration was increased but the emission of the light was emitted when the voltage was below 8 V. Among four different dopant concentrations of MEH-PPV+PEIE, the brighter light emission was observed at 0.3 wt% of PEIE. Apparently, the concentration of dopant solution gives a significant contribution to the performance of OLED in terms of structural, optical and electrical properties.