Now showing 1 - 10 of 17
  • Publication
    Effect of solvent on mechanical and physical properties of PMMA/Sic composite films
    ( 2024-12)
    Auni Fakhira Che Baharudin
    ;
    ; ; ;
    The selection of solvent in solution casting is crucial as it may affect the morphology and properties of the resulting composite films. In this study, the effect of solvent on the properties of poly(methyl methacrylate)/silicon carbide (PMMA/SiC) composite films was investigated. By using acetone, the solution casting was carried out at various solvent-to-solid (S/S) ratio, from 4:1 to 10:1 at room temperature. It was found that the increasing S/S ratio enhanced the tensile strength and modulus of elasticity of pristine PMMA films but deteriorated its elongation at break, up to 8:1 ratio. The crystallinity of the PMMA films was found to increase with S/S ratio, as confirmed by the higher peak intensity in X-Ray Diffraction (XRD) patterns and the SEM micrographs. In the second part of the study, by using S/S ratio of 8:1, the nano sized SiC (0.25 wt%) was added as a filler into PMMA and toluene with different ratio was added as a secondary solvent. The addition of SiC has increased the tensile strength and modulus of elasticity of PMMA/SiC but decreased its elongation at break. However, the presence of toluene reduced the tensile strength of the PMMA/SiC composite films and resulting in rougher tensile fracture surfaces as shown in SEM micrographs. The toluene with nonpolar nature had affected the distribution of SiC in PMMA. It can be concluded that the properties of the PMMA composites films can be tailored according to the needs of applications.
  • Publication
    Preparation and Characterization of Tensile Properties of PMMA/SiC Nanowhiskers Nanocomposite Films: Effect of Filler Loading and Silane Treatment
    ( 2023-10-01) ; ;
    Lee L.Y.
    ;
    ;
    Foong P.Y.
    The preparation of nanocomposites through melt mixing was challenging as the nanofillers tend to form agglomeration. The silicon carbide nanowhiskers (SiCNWs) filled poly (methyl methacrylate) (PMMA) thin film in this study was prepared by means of solution casting. Acetone with low toxicity was used as solvent to dissolve the PMMA pellets. A coupling agent, silane was used to enhance the properties of composite films. Besides, the untreated and treated SiCNWs were filled into PMMA matrix, respectively with the filler loading varied from 0.2 to 0.8 wt%. The universal testing machine was used to investigate the tensile properties of composites. It was found out that the tensile strength of the PMMA was reduced in the presence of SiCNWs. However, the tensile strength had increased with the rise of filler loading. At 0.8 wt% of SiCNWs, the composites’ tensile strength was comparable to virgin PMMA. Meanwhile, the SiCNWs had reduced the elongation at break but increased the elastic modulus of PMMA/SiCNWs nanocomposite films. In addition, silane surface treatment on SiCNWs had improved the tensile strength and ductility but lowered the elastic modulus of the nanocomposites. The improvement was due to the enhancement of interfacial adhesion between SiCNWs and PMMA.
  • Publication
    The effect of coated calcium carbonate using stearic acid on the recovered carbon black masterbatch in low-density polyethylene composites
    ( 2023-01-01)
    Leow V.J.
    ;
    ;
    Yeoh C.K.
    ;
    ;
    Wong W.C.
    ;
    ;
    Mohamed Rasidi M.S.
    ;
    This research focuses on recycling rubber tire waste through pyrolysis to produce recovered carbon black (rCB). The rCB is combined with recycled low-density polyethylene (rLDPE), calcium carbonate (CaCO3), fatty acid, metallic stearate, and polyethylene (PE) wax to create an rCB masterbatch for household packaging. Surface modification of CaCO3 particles using stearic acid improves the compatibility with LDPE. The study investigates mechanical properties, morphology, melt flow index (MFI), X-ray diffraction, and thermogravimetric analysis in three systems: uncoated, coated, and a hybrid combination of coated and uncoated CaCO3 in LDPE/rCB masterbatch composites. The coated system demonstrates higher mechanical properties and improved compatibility between CaCO3 and LDPE. All three systems exhibit enhanced thermal stability and MFI compared to virgin LDPE, with the coated system showing the most significant improvement. The study showcases the potential of LDPE/rCB masterbatch composites for household packaging, with the coated system displaying the optimum performance across various characteristics.
  • Publication
    A comparative study of microwave welding using multiwalled carbon nanotubes and silicon carbide nanowhiskers as microwave susceptors
    ( 2024-10)
    Phey Yee Foong
    ;
    ; ; ; ; ; ; ;
    Foo Wah Low
    ;
    Muhammad Kashif
    ;
    Nor Azura Abdul Rahman
    ;
    ;
    Veeradasan Perumal
    Recently, microwave welding has arisen as an advanced joining method due to its versatility and rapid heating capabilities. Among others, microwave susceptors play a crucial role in microwave welding, as different classes of microwave susceptors have distinct microwave heating mechanisms. In this work, polypropylene (PP) was utilized as a thermoplastic substrate and two types of microwaves susceptors, namely multiwalled carbon nanotubes (MWCNTs) and silicon carbide nanowhiskers (SiC NWs), were studied for microwave welding. The susceptor was first dispersed in acetone to form susceptor suspension. Next, the susceptor suspension was deposited onto the targeted area on substrate and paired with another bare PP substrate. The paired sample was then exposed to 800 W microwave radiation in a microwave oven. Afterward, the welded joint was evaluated using a tensile test and scanning electron microscopy to determine its joint strength and cross-section microstructure. The results showed that the joint strength increased as the heating duration increased. The welded joint formed using MWCNTs achieved a maximum strength of 2.26 MPa when 10 s was used, while the SiC NWs-formed welded joint achieved a maximum strength of 2.25 MPa at 15 s. This difference in duration in forming a complete welded joint can be attributed to the higher microwave heating rates and thermal conductivity of MWCNTs. However, increasing the heating duration to 20 s caused severe deformation at the welded joint and resulted in low joint strength. Overall, this study highlights the significance of understanding the microwave heating mechanism of different susceptors and provides essential insight into the selection of a microwave susceptor for microwave welding.
  • Publication
    Comparison study: The effect of unmodified and modified graphene nano-platelets (GNP) on the mechanical, thermal, and electrical performance of different types of GNP-filled materials
    Graphene nano-platelet (GNP) nano-fillers were successfully covalently functionalized with carboxylic and epoxide groups as proven by Fourier-transform infrared spectroscopy. This paper reports the effect of unmodified and modified GNP nano-fillers on the mechanical, thermal, and electrical performance of GNP-filled materials. The results show that the mechanical properties of GNP-filled materials were enhanced with a modified GNP nano-filler. Among the GNP-filled materials, the modified epoxy/NR/GNP compatibilized material shows higher flexural and toughness properties. The modified GNP nano-filler has reduced the thermal stability of the modified compatibilized material. This is because the oxygen-containing groups (C–O–C and –COOH) on the surfaces of modified GNP nano-fillers have lower thermal stability; which accelerates the thermal decomposition of the modified material. Modified compatibilized material shows higher electrical conductivity than the unmodified compatibilized material. X-ray diffraction results proved that d-spacing of modified GNP nano-fillers in modified compatibilized material was shortest when compared to unmodified GNP nano-fillers in unmodified compatibilized material, thus, allowing more electrons to travel at a faster rate through the conductive pathways.
  • Publication
    Rheological and thermal properties of palm kernel shell filled low density polyethylene composites
    The palm kernel shell (PKS) filled low density polyethylene (LDPE) composites were prepared by Z-blade mixer at temperature of 180 °C and rotor speed of 50 rpm. The effects of PKS loading and different types of chemical modifications on the rheological and thermal properties of the composites were studied. Chemical modification such as poly(ethylene-co-acrylic acid) (PEAA), acrylic acid (AA), 3- aminopropyltriethoxysilane (3-APE), coconut oil coupling agent (COCA) and ecodegradant were used in this study. The addition of PKS into LDPE matrix changed the rheological and thermal properties of the composites. The results showed that increasing PKS loading had decreased the melt flow index (MFI) values and non-Newtonian index but increased the melt consistency, viscosity and activation energy of the LDPE/PKS composites. The increasing temperature had increased the MFI values of composites. The viscosity of composites that was generated from capillary rheometer decreased with rise of temperature. The apparent shear stress of the composites increased with apparent shear rate and PKS loading. The composites with addition of PEAA, AA, COCA and eco-degradant showed higher MFI values but the composites treated with 3-APE exhibited lower MFI values than untreated composites. The activation energy for the composites with PEAA and 3-APE decreased, whereas the activation energy for the composites with AA, COCA and eco-degradant increased as compared to composites without chemical modifications. The composites with eco-degradant gave lowest viscosity, thus eased the composite processing at high filler loading. The thermal properties of composites showed that addition of PKS had decreased the onset temperature and the total weight loss of composites. The chemical modifications had increased the thermal stability of composites, whereas higher onset temperature and lower total weight loss at high temperature were observed. The FTIR spectra of composites showed that the functional groups of the composites changed with chemical modification.
  • Publication
    Fabrication of polymethyl methacrylate composite films with silanized SiC nanoparticles
    ( 2025-01)
    Mohamad Azrol Bin Azmi
    ;
    ; ;
    Phey Yee Foong
    ;
    The properties of polymeric composites have often been altered with the incorporation of fillers. In this study, the poly(methyl methacrylate) (PMMA) was filled with silicon carbide nano-particles (SiC). The PMMA/SiC composite films were prepared through solution casting by using acetone as solvent. The different loading of SiC ranging from 0.25 wt% to 1.00 wt% were incorporated into the PMMA matrix. The effect of SiC loading and silane coupling agent on PMMA/SiC composite films in terms of mechanical, physical, and morphological properties was investigated. It was found that the increasing SiC loading and the silane treatment had increased the tensile strength and Young’s modulus but reduced the elongation at the break of PMMA/SiC composite films. At 0.75 wt% of silanized SiC, the tensile strength of the composite films was found to increase by 25 % from 30 to 37.5 MPa as compared to the virgin PMMA. Besides, the hardness of composite films was also increased with SiC loading and silane treatment. The presence of 1.00 wt% silanized SiC had increased 21.7% the hardness of the virgin PMMA, resulting in the increase of Shore A value from 69 to 84. By using silane treatment, better filler-matrix interaction was established as smoother fracture surfaces were observed through SEM micrographs and higher d-spacing was found in X-ray diffraction (XRD) patterns. The PMMA/SiC composite films prepared were suitable to be used in sporting goods, additive manufacturing, and environmental and protective coatings.
  • Publication
    Feasibility Study of Microwave Welding of Polypropylene Using Silicon Carbide Nanowhiskers as Microwave Susceptor
    ( 2023-01-01)
    Foong P.Y.
    ;
    ; ;
    Teh P.L.
    ;
    Currently, welding is the most efficient way for joining of plastic. Due to its rapid heating, efficiency in term of time and energy, and ability to be applied on components of any shape, microwave welding stands out from other welding methods. Additionally, SiCNWs was proposed as the microwave susceptor for the microwave welding of thermoplastic in this work due to its high dielectric loss and biocompatibility. To produce microwave welded joint, SiCNWs was first mixed with acetone to obtain a SiCNWs suspension. After that, SiCNWs was drop casted onto the targeted area of PP, allowed to dry and then microwave irradiated. In this work, the microwave heating time studied ranged from 15 s to 20 s. SEM and single lap shear test were used to characterise the microwave welded joint. From the findings, the tensile strength increased as the microwave heating duration increased from 15 s to 18 s, due to formation of SiCNWs/PP nanocomposite welded joint layer with increasing thickness. Yet, when the microwave heating time was prolonged to 20 s, the tensile strength decreased to 0.85 MPa. Besides, a void was observed at the welded joint and it is believed that the presence of void causes the welded joint to weaken when force is applied. Under properly regulated of microwave heating time, a strengthened nanocomposite welded joint can be produced which demonstrate great promise in plastic welding.
  • Publication
    Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube
    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO2 and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO2 and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO2 in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO2 and MWCNTs to SiCNTs was achieved for blend of SiO2 and MWCNTs in molar ratio of 1:3.
      3  9
  • Publication
    Synthesis and preparation of metal oxide powders
    In recent years, metal oxide, especially in the form of powders, is extensively studied owing to their unique and novel properties. In this regard, this chapter provides a thorough description of current advances on the synthesis and preparation of metal oxide powders. The chapter begins with the introduction and motivation of the preparation of synthetic metal oxide powders. This is followed by the description of the synthesis and preparation method of metal oxide powders, which can be categorized into chemical methods, physical methods, and biological methods. Several important methods under each category were described with examples. This chapter ends with concluding remarks with views on the recent progress and future challenges of metal oxide powders research.
      3  9