Now showing 1 - 10 of 26
  • Publication
    Low temperature annealed zinc oxide nanostructured thin film-based transducers: Characterization for sensing applications
    ( 2015)
    R. Haarindraprasad
    ;
    ; ;
    Muhammad Kashif
    ;
    P. Veeradasan
    ;
    S. R. Balakrishnan
    ;
    ;
    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH.
  • Publication
    Improvement synthesis of graphene oxide yield in two steps of intercalation and oxidation of flexible graphite foil by electrochemical exfoliation
    ( 2024-04)
    M. O. Ariffa
    ;
    ;
    Synthesis of high quality and quantity of graphene by cost-effective methods are highly desirable for various application. In electrochemical exfoliation, graphite foil has been used as carbon source for the synthesis of high yield of graphene flakes. Electrochemical exfoliation is one of the faster and cheaper method to synthesize graphene sheets. In this work, five different types of concentration of sulphuric acid were used for electrochemical exfoliation. The electrochemical cell design where graphite foil as anode and copper foil as cathode which were connected to DC power supply of 5V. To examine the morphology scanning electron microscope (SEM) was employed in which the sheet structures with large lateral dimension and thin graphene flakes. Furthermore, X-ray diffraction (XRD) revealed that exfoliated graphene samples showed a significant peak at about 2θ = 26º corresponded to graphite.
  • Publication
    Towards greener one-part geopolymers through solid sodium activators modification
    ( 2022-12-10)
    Wan-En O.
    ;
    Yun-Ming L.
    ;
    Cheng-Yong H.
    ;
    ; ;
    Bin Khalid M.S.
    ;
    ;
    Shee-Ween O.
    ;
    Pei Seng T.
    ;
    Yong Jie H.
    ;
    Zulkifly K.
    This paper investigates the influence of various solid activators and their mixing parameters on the physical, mechanical and microstructural characteristics of greener one-part geopolymers (OPG) based on high calcium fly ash. The high calcium fly ash that has rarely been explored was utilised to develop OPG in this study. The anhydrous sodium metasilicate (Na2SiO3) with negative environmental impact propelled the partial replacement of Na2SiO3 with sodium hydroxide (NaOH) and sodium carbonate (Na2CO3). Two sets of high calcium fly ash OPGs were developed: (1) the MH-OPG comprised Na2SiO3 and NaOH; (2) the MC-OPG comprised Na2SiO3 and Na2CO3. The optimal MH-OPG (73 MPa) and MC-OPG (75 MPa) exhibited superior compressive strength, higher than the minimal requirement (>28 MPa) of ASTM C150/C150M-18 for construction binder material. Various solid alkali activators triggered different reaction mechanisms, yielding distinctive reaction products that contributed to strength growth. The sodium calcium aluminosilicate hydrate ((N,C)-A-S-H) gel was developed in MH-OPG, whereas the sodium carbonate hydrate, sodium aluminosilicate hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H) binding phases were developed in the MC-OPG. Although Na2CO3 reduced the water demand, improved the fluidity and setting time, the MC-OPG was more sensitive to the alteration of mixing compositions, suggesting a tougher performance control during field application than the MH-OPG. The total embodied carbon (EC) of MC-OPG was lowered by 15.4% compared to that of MH-OPG. The embodied carbon index (ECI) of MH-OPG and MC-OPG were 81.3% and 84.7% less than that of OPC products. This work suggests that substituting Na2SiO3 with NaOH or Na2CO3 effectively produced a greener construction material without compromising mechanical strength.
  • Publication
    Fabrication of Integrated Electrode for pH Sensor Application
    ( 2021-01-01)
    Mohd Akhir F.S.
    ;
    ;
    Jin T.S.
    ;
    ; ;
    Azman Abu Hassan M.
    Integrated Electrode (IDEs), as a sensor, is a pervasive device in modern electronics and future hopes for producing a highly sensitive and selective sensor. In this work, a simple method of conventional photolithography for the fabrication of interdigitated electrodes is presented in detail. The structural of highly uniform IDEs device was optically characterized using high power microscope (HPM) and scanning electron microscope (SEM). Besides, the fabricated IDEs device was undergone electrical measurement with different pH. The result shows the highest current at 96 nA when the IDEs was tested with pH 10. Overall, our study establishes a correlation between structural and electrical properties of Al IDEs thin films with different pH
  • Publication
    Effect of Alkaline Treatment on Tensile Properties of Low Density Polyethylene/Bean Sprout Skin Composites
    (Universiti Malaysia Perlis, 2025-06-10) ; ;
    This study the effect of alkaline treatment on the tensile properties of LDPE/BSS and LDPE/BSSNaOH composites at various loadings (5–25 phr). The composites were fabricated through a Z-blade mixer and compressed at the temperature of 160oC. The tensile strength increased with filler loading up to 15 phr but decreased at 20 phr due to filler agglomeration. Alkali treatment enhanced filler-matrix adhesion, resulting in higher tensile strength and Young’s modulus for LDPE/BSSNaOH composites. Elongation at break decreased with filler content, indicating improved stiffness but reduced ductility. The findings highlight the role of filler loading and surface treatment in optimizing mechanical performance, offering insights for developing high-performance, sustainable polymer composites.
  • Publication
    Comparative mechanical and microstructural properties of high calcium fly ash one-part geopolymers activated with Na₂SiO₃-anhydrous and NaAlO₂
    ( 2021)
    Ooi Wan-En
    ;
    ; ; ; ; ;
    Ong Shee-Ween
    ;
    Ng Hui-Teng
    ;
    Ng Yong-Sing
    ;
    ;
    Long-Yuan Li
    This paper investigates the effect of varying solid alkali activators on the fresh and hardened properties and microstructural changes of one-part geopolymers (OPGs). Single and binary solid alkali activators were used to activate high calcium fly ash. The alkali activators were either solely sodium metasilicate (Na₂SiO₃) or a combination of sodium aluminate (NaAlO₂) and sodium metasilicate (Na₂SiO₃). The OPG activated with anhydrous Na₂SiO₃ achieved an excellent 28-day compressive strength of 83.6 MPa while OPG activated with NaAlO₂ and Na₂SiO₃ attained a compressive strength of 45.1 MPa. The Na₂SiO₃-activated OPG demonstrated better fluidity than the OPG activated with NaAlO₂ and Na₂SiO₃ due to the thixotropic behaviour caused by the NaAlO₂. The Na₂SiO₃-activated OPG consisted of sodium-calcium aluminium silicate hydrate ((N,C)-A-S-H) gel phase, while the OPG activated with NaAlO₂ and Na₂SiO₃ comprised of the coexistence of sodium aluminium silicate hydrate (N-A-S-H) and calcium aluminium silicate hydrate (C-A-S-H) gel phases. Regardless of the distinctive properties, the OPGs are adequate for building materials applications.
      1  8
  • Publication
    Towards greener one-part geopolymers through solid sodium activators modification
    ( 2022-12-10)
    Ooi Wan En
    ;
    ; ; ; ;
    Bin Khalid M.S.
    ;
    ;
    Ong Shee Ween
    ;
    Pei Seng T.
    ;
    Hang Yong Jie
    ;
    Khairunnisa Zulkifly
    This paper investigates the influence of various solid activators and their mixing parameters on the physical, mechanical and microstructural characteristics of greener one-part geopolymers (OPG) based on high calcium fly ash. The high calcium fly ash that has rarely been explored was utilised to develop OPG in this study. The anhydrous sodium metasilicate (Na2SiO3) with negative environmental impact propelled the partial replacement of Na2SiO3 with sodium hydroxide (NaOH) and sodium carbonate (Na2CO3). Two sets of high calcium fly ash OPGs were developed: (1) the MH-OPG comprised Na2SiO3 and NaOH; (2) the MC-OPG comprised Na2SiO3 and Na2CO3. The optimal MH-OPG (73 MPa) and MC-OPG (75 MPa) exhibited superior compressive strength, higher than the minimal requirement (>28 MPa) of ASTM C150/C150M-18 for construction binder material. Various solid alkali activators triggered different reaction mechanisms, yielding distinctive reaction products that contributed to strength growth. The sodium calcium aluminosilicate hydrate ((N,C)-A-S-H) gel was developed in MH-OPG, whereas the sodium carbonate hydrate, sodium aluminosilicate hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H) binding phases were developed in the MC-OPG. Although Na2CO3 reduced the water demand, improved the fluidity and setting time, the MC-OPG was more sensitive to the alteration of mixing compositions, suggesting a tougher performance control during field application than the MH-OPG. The total embodied carbon (EC) of MC-OPG was lowered by 15.4% compared to that of MH-OPG. The embodied carbon index (ECI) of MH-OPG and MC-OPG were 81.3% and 84.7% less than that of OPC products. This work suggests that substituting Na2SiO3 with NaOH or Na2CO3 effectively produced a greener construction material without compromising mechanical strength.
      1
  • Publication
    Hydrothermal Growth Zinc Oxide Nanorods for pH Sensor Application
    The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200 °C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
      1
  • Publication
    From nanostructure to nano biosensor: Institute of Nano Electronic Engineering (INEE), UniMAP experience
    Nanostructure is defined as something that has a physical dimension smaller than 100 nanometers, ranging from clusters and/or to dimensional layers of atoms. There are three most important nanostructures that are extensively studied and researched in various organizations including Institute of Nano Electronic Engineering (INEE) in UniMAP. These include quantum dot, nanowire, and nanogap, which have been successfully designed and fabricated using in-house facilities available. These are subsequently used as a main sensing component in nanostructures based biosensor. This fabrication, characterization and testing job were done within four main interlinked laboratories namely microfabrication cleanroom, nanofabrication cleanroom, failure analysis laboratory and nano biochip laboratory. Currently, development of Nano Biosensor is the main research focus in INEE. In principle, biosensor is an analytical device which converts a biological response into an electrical signal.
      11  1
  • Publication
    Comparative mechanical and microstructural properties of high calcium fly ash one-part geopolymers activated with Na2SiO3-anhydrous and NaAlO2
    ( 2021-11-01)
    Ooi Wan-En
    ;
    ; ; ;
    Li L.Y.
    ;
    ; ;
    Ong Shee-Ween
    ;
    Ng Hui-Teng
    ;
    Ng Yong-Sing
    ;
    Nur Ain Jaya
    This paper investigates the effect of varying solid alkali activators on the fresh and hardened properties and microstructural changes of one-part geopolymers (OPGs). Single and binary solid alkali activators were used to activate high calcium fly ash. The alkali activators were either solely sodium metasilicate (Na2SiO3) or a combination of sodium aluminate (NaAlO2) and sodium metasilicate (Na2SiO3). The OPG activated with anhydrous Na2SiO3 achieved an excellent 28-day compressive strength of 83.6 MPa while OPG activated with NaAlO2 and Na2SiO3 attained a compressive strength of 45.1 MPa. The Na2SiO3-activated OPG demonstrated better fluidity than the OPG activated with NaAlO2 and Na2SiO3 due to the thixotropic behaviour caused by the NaAlO2. The Na2SiO3-activated OPG consisted of sodium-calcium aluminium silicate hydrate ((N,C)-A-S-H) gel phase, while the OPG activated with NaAlO2 and Na2SiO3 comprised of the coexistence of sodium aluminium silicate hydrate (N-A-S-H) and calcium aluminium silicate hydrate (C-A-S-H) gel phases. Regardless of the distinctive properties, the OPGs are adequate for building materials applications.
      2