Options
Tan Soo Jin
Preferred name
Tan Soo Jin
Official Name
Tan, Soo Jin
Alternative Name
Jin, T. S.
Tan, S. J.
Soo-Jin, Tan
Tan, J. S.
Jin, Tan Soo
Main Affiliation
Scopus Author ID
55432801200
Researcher ID
ABG-5365-2021
Now showing
1 - 10 of 14
-
PublicationEffect of fly ash based geopolymer reinforced low density polyethylene (LDPE) composite( 2020-07-09)
;Shanmugam, Devi SriComposite is commonly used today attributed to the distinctive characteristics that can be acquired from the mixture of the components in them. However, as time passes on, our globe is heading towards providing green technology for the sector to use environmentally friendly methods. In this study, Fly Ash geopolymer is used as filler, in the production of LDPE / FA composite, to be inserted in a low-density polyethylene matrix. To enhance bonding between the fly ash filler and the LDPE matrix, alkali activator therapy with the use of sodium hydroxide and sodium silicate at the molarity of NaOH is in range of 12M and the ratio for fly ash to alkali activator is about 2.0. In this research properties of these composites are investigate using tensile test, morphology analysis, thermal properties and infrared spectrum analysis, FTIR. The result found that the tensile strength and modulus of elasticity of the composite increased with increasing of filler loading but the percentage of elongation decrease due to filler loading increase while fly ash filler show the interfacial adhesion on LDPE matrix as evidenced by images of scanning electron microscopy (SEM) and this also proved by FTIR spectra explain that LDPE/FA charged with SiO which is fly ash composed with silica. Moreover, thermal properties explain that fly ash interface reaction which can change to amorphous crystallization during the temperature increase. -
PublicationTurning waste into strength enhancing geopolymer composites with Oil Palm Frond Fibers (OPF)( 2024-10)
;Ng Hui-Teng ;Muhammad Aqil Asyraf Bin Mohd Roslan ;Siti Khadijah Binti Zulkepli ;Tan You HowNg Yong-SingGeopolymers are alternatives to ordinary Portland cement as construction materials. The increasing demand for sustainable construction materials has driven the utilization of industrial by-products and agricultural waste. The disposal of oil palm frond (OPF) biomass as waste in landfills poses significant environmental challenges, necessitating effective recycling strategies. This study examines the incorporation and feasibility of OPF as a reinforcing fiber in fly ash geopolymer composites, examining its impact on physical and mechanical properties. Various parameters were tested, including fiber content (10–20 wt.%), shapes (shredded and tubular), and lengths (1–3 cm). The geopolymer composites with 10 wt.% shredded oil palm frond and 1-cm tubular oil palm frond fibers enhance the compressive strength by 17% compared to the control sample without oil palm frond. The shredded oil palm frond was particularly effective, enhancing strength performance and achieving better dispersion within the geopolymer matrix. Conversely, increasing the fiber content and length generally resulted in diminished composite strength, attributed to the creation of a more porous structure and weaker fiber-matrix interactions. However, lower fiber additions were shown to decrease porosity and water absorption, highlighting the potential of optimized oil palm frond fiber content and form in improving the environmental and mechanical performance of geopolymer composites. These results support the viability of oil palm frond as a sustainable additive in geopolymers, contributing to waste reduction and material innovation in construction. -
PublicationEffect of solvent on mechanical and physical properties of PMMA/Sic composite films( 2024-12)
;Auni Fakhira Che BaharudinThe selection of solvent in solution casting is crucial as it may affect the morphology and properties of the resulting composite films. In this study, the effect of solvent on the properties of poly(methyl methacrylate)/silicon carbide (PMMA/SiC) composite films was investigated. By using acetone, the solution casting was carried out at various solvent-to-solid (S/S) ratio, from 4:1 to 10:1 at room temperature. It was found that the increasing S/S ratio enhanced the tensile strength and modulus of elasticity of pristine PMMA films but deteriorated its elongation at break, up to 8:1 ratio. The crystallinity of the PMMA films was found to increase with S/S ratio, as confirmed by the higher peak intensity in X-Ray Diffraction (XRD) patterns and the SEM micrographs. In the second part of the study, by using S/S ratio of 8:1, the nano sized SiC (0.25 wt%) was added as a filler into PMMA and toluene with different ratio was added as a secondary solvent. The addition of SiC has increased the tensile strength and modulus of elasticity of PMMA/SiC but decreased its elongation at break. However, the presence of toluene reduced the tensile strength of the PMMA/SiC composite films and resulting in rougher tensile fracture surfaces as shown in SEM micrographs. The toluene with nonpolar nature had affected the distribution of SiC in PMMA. It can be concluded that the properties of the PMMA composites films can be tailored according to the needs of applications. -
PublicationThe role of zinc chloride in enhancing mechanical, thermal and electrical performance of ethylene vinyl acetate/carbonized wood fiber conductive composite( 2021-02-02)
;Alrashdi A.A.Masa A.Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix. -
PublicationHydrothermal Growth Zinc Oxide Nanorods for pH Sensor Application( 2023-10-01)The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200 °C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
1 -
PublicationAcid-resistance of one-part geopolymers: Sodium aluminate and carbonate as alternative activators to conventional sodium metasilicate and hydroxide( 2023-11-10)
;Wan-En O. ;Pakawanit P. ;Wei Ken P. ;Khalid M.S. ;Md Razi H. ;Lee W.H. ;Shee-Ween O.Yong-Jie H.In this study, the durability of one-part geopolymers (OPGs) made from high calcium fly ash is assessed by investigating their resistance to acid attacks. The predominant use of less environmentally sustainable sodium metasilicate (Na2SiO3) and sodium hydroxide (NaOH) in OPG, along with the limited understanding about the influence of solid alkali activators on OPG's acid resistance propelled the investigation and comparison of acid resistance of OPGs activated using both conventional activators and potential alternatives like sodium aluminate (NaAlO2) and sodium carbonate (Na2CO3). The OPGs developed were exposed to sulphuric acid (H2SO4) solution for 28 days. The MH sample (activated with Na2SiO3 and NaOH) was vulnerable to acid attack, with a 66% compressive strength drop after 5% H2SO4 solution exposure, due to high sorptivity. In contrast, the MA sample (activated with Na2SiO3 and NaAlO2) demonstrated excellent acid resistance, with only a 32% strength reduction, attributed to its Al-rich hydrated gel. The MC sample (activated with Na2SiO3 and Na2CO3) exhibited a 41% strength reduction, where the formation of calcite reduced extensive ion exchange, gradually mitigated deterioration. The residual compressive strength of MA and MC samples increased by 7% and 9% from 7 to 28 days of immersion in 5% H2SO4 solution, respectively. The NaAlO2 and Na2CO3 are potential activators for OPG, serving as alternative construction materials to OPC and traditional geopolymers in acidic environments.1 -
PublicationFunctionalized Carbon Nanotube-Modified ELISA for Early Detection of Heart Attack( 2023-12-01)
;Chow E.M.Y. ;Kashif M.A warning issue of heart attacks in young adults needs immediate attention lately. Enzyme-linked immunosorbent assay (ELISA) is an easy and commonly used method for detecting early stages of heart attack. Cardiac troponin I (cTnI) is a responsible biomarker for acute myocardial infarction. However, the conventional ELISA system was only able to detect at 100 pM of cTnI. To improve the system, enhancements were introduced through the integration of functionalized carbon nanotube (fCNT) to amplify cTnI detection signals. By utilizing the advantage of fCNT, a noticeable improvement in results can be obtained. The detection limit was lowered down to an impressive 10 pM. Furthermore, the change of absorbance increased from 31.90% for conventional ELISA surge to 98.61 for modified ELISA system. This three-fold increase in sensitivity shows remarkable improvement through the introduction of fCNT in modified ELISA technique.1 -
PublicationProperties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading( 2021-09-01)
;Mutalib T.N.A.B.T.A.Polyaniline/graphene oxide (PANI/GO) composites at different wt% of GO were prepared via solution method. PANI was mixed with the GO synthesized from the improved Hummer’s method. The formation of GO was confirmed via Raman and C/O ratio. Based on the FT-IR, XRD and SEM results, it confirmed the presence of both PANI and GO characteristics at 10.9°, 25.8° and 27.8° and interactions between PANI and GO particles in PANI/GO composites at different GO loading. SEM micrographs showed a folding and wrinkled surface of GO due to the defect upon oxidation process. This means that the weak π–π interactions or the agglomeration of GO have caused PANI unable to attach on the large conjugated basal planes of GO sheets. The defective domains made GO as an insulator as it contained distortions and oxygen-containing functional groups and their local decoration. Low-conductivity domain had conquered most of the GO region which later reduced the pathway of the current flow; therefore, conductivity is affected. The wrinkled structure also resulted in the low conductivity as it weakens the interfacial interaction between PANI and GO and thus disrupted the electron movement in the composites. Due to this, the electrical conductivity reached up to 1.83 × 10−10 S/cm as the GO loading increased to 50 wt%.2 -
PublicationEvaluation of the effect of silica fume on amorphous fly ash geopolymers exposed to elevated temperature( 2021-01-01)
;Li O.H. ;Bayuaji R. ;Teng N.H. ;Nabiałek M. ;Jeż B.Sing N.Y.The properties of amorphous geopolymer with silica fume addition after heat treatment was rarely reported in the geopolymer field. Geopolymer was prepared by mixing fly ash and alkali activator. The silica fume was added in 2% and 4% by weight. The geopolymer samples were cured at room temperature for 28 days before exposed to an elevated temperature up to 1000◦C. The incorporation of 2% silica fume did not cause significant improvement in the compressive strength of unexposed geopolymer. Higher silica fume content of 4% reduced the compressive strength of the unexposed geopolymer. When subjected to elevated temperature, geopolymer with 2% silica fume retained higher compressive strength at 1000◦C. The addition of silica fume in fly ash geopolymer caused a lower degree of shrinkage and expansion, as compared to geopolymer without the addition of silica fume. Crystalline phases of albite and magnetite were formed in the geopolymer at 1000◦C.1 8 -
PublicationHydrothermal growth zinc oxide nanorods for pH sensor application( 2023-10)The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200°C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet–visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
1 19