Options
Yufridin Wahab
Preferred name
Yufridin Wahab
Official Name
Yufridin, Wahab
Alternative Name
Wahab, Yufridin
Wahab, Y.
Wahab, Y. Abdul
Main Affiliation
Scopus Author ID
6507764452
Researcher ID
P-8844-2014
Now showing
1 - 7 of 7
-
PublicationProcess development and characterization towards microstructural realization using laser micromachining for MEMS( 2020-05-01)
;Elden Harrison FelixMuhamad Nasir BakarThis paper presents the process development and characterization towards microstructural realization using laser micromachining for MEMS. Laser micromachining technique is environmental friendly, fast patterning and able to avoid multi steps in conventional lithography based microfabrication techniques. This research focuses on understanding the dimensional properties of materials of the laser beam on the silicon wafers where microstructures were fabricated. Four main parameters like rectangular variable aperture (RVA-XY) size, number of pulse, stage/table feed rate and laser energy play important role in laser ablation process. The pattern of the microchannel or line with 1 cm length was drawn by AutoCAD software or any CAD software. The pattern in the CAD software is then transferred onto the silicon wafer by using laser micromachining. Finally, high power microscope (HPM) and Stylus Profiler will be used as measurement tools for observing and analysing the width and depth of the microchannel structures fabricated by laser micromachining. When using bigger size of RVA, it will lead to bigger microchannel width. There are a little effects or almost comparable in term of microchannel depth if varying all parameters’ value. Surface roughness test also needs to be considered before choosing the best setting for the laser ablation.3 -
PublicationA Numerical Study of Collective Cell Migration in a Microchannel Driven by Surface Acoustic Wave (SAW) Device( 2023-01-01)Zaman W.S.W.K.Collective cell migration is involved in a variety of biological contexts, including tissue morphogenesis, wound healing, and cancer invasion. Many studies have revealed that chemical, mechanical, and electrical stimulation all affect cell migration. Although an acoustic stimulus has been shown to influence cell migration in the past, the underlying mechanism is still unknown. A computational model that accounts for acoustic-structure interaction was constructed in this study to simulate the formation of a surface acoustic wave (SAW) field and the application of the acoustic pressure field on collective cell migration. A group of cells within a microchannel device and two ports of interdigitated transducers (IDTs) with different wavelengths were modeled. The stresses within cells were investigated as it was influenced by substrate displacement and pressure acoustic in the cell media generated by the SAW device. As a result, we observed the local stress within cells near the solid-fluid interfaces. For propagating SAW, the shorter wavelength of IDTs (600 μm) attributed to high stress at the cell's top and bottom as compared to the SAW device with the longer wavelength (1000 μm). The standing SAW occurred underneath collective cells. The results of standing SAW on cell stress at the bottom confirm that the SAW device can be useful to regulate the abnormalities cellular activities associated with cell migration.
1 -
PublicationNumerical Simulation of Transdermal Iontophoretic Drug Delivery System( 2021-11-25)Manaf A.A.Transdermal Iontophoretic Drug Delivery System (TIDDS) is a non-invasive method of systemic drug delivery that involves by applying a drug formulation to the skin. The drug penetrates through the stratum corneum, epidermis and dermis layers. Once the drug reaches the dermal layer, it is available for systemic absorption via dermal microcirculation. However, clinical testing of new drug developed for the iontophoretic system is a long and complex process. Recently, most of those major pharmaceutical companies have attempted to consider computer-based bio-simulation strategies as a means of generating the data necessary to help make a better decision. In this work, we used computational modelling to investigate the TIDDS behaviour. Our interest is to study the efficacy of drug diffusion through transdermal delivery, including the thermal effect on the skin. We found that drug will be delivered more efficiently if the electrical potential and the position of electrodes are optimum. We analysed the drug diffusion time of the system using 1,3 and 5 mA DC source. In addition, we also modify the electrode distance from 10 mm to 30 mm long and analysed the effect of delivery time and d effect to the skin thermal. We conclude that, a high electrical current, as instance, a 5 mA DC, delivered the drug faster into the skin but increased the skin temperature because of skin joule heating effect. However, a 30 mm electrodes distance setting decreased the skin temperature significantly than the 10 mm distance with more than 9.7 °C under 5 mA DC and 60 minutes of operation. TIDDS enhanced drug delivery compared to oral consumption and might be suitable used for localizing treatments such as chronic disease. This work provides great potential and is useful to efficiently design of iontophoretic drug delivery system including new drugs delivery applications.
1 -
PublicationCharacterization of Excimer Laser Micromachining Parameters to Derive Optimal Performance for the Production of Polydimethylsiloxane (PDMS)-based Microfluidic Devices( 2024-01-01)
;Ting Z.K.Laser micromachining has been used as an alternative to producing microfluidics structures and simplifying the conventional soft lithography process. In this paper we characterize the excimer laser micromachining parameters and demonstrate its application by producing several microfluidic structures in polydimethylsiloxane (PDMS). The parameters include the number of laser pulses, laser energy and rectangular variable aperture (RVA) in both x- and y-directions. We found that the laser energy and pulse rate affect the depth of micromachining d channels, while RVA in both x- and y-directions affects the width of the channels. Repetition of laser scan does not change the channel width but significantly changes the channel depth. Proper adjustment for laser energy and pulse rate is required to fabricate a desired channels depth. In order to demonstrate the microfabrication capability of an excimer laser with the optimal operating parameters, several microfluidic structures were micromachining d into PDMS with a KrF excimer laser.1 -
PublicationDevelopment of iron thin films by electron beam physical vapour deposition (EBPVD): A Review( 2020-11-24)
;Nadzri, Nur Izzati Muhammad ;Khemar, Athirah ;Hasbi, Mohd Asyraaf M.This review paper study about the possibilities of results obtained from conducted experiment of iron (Fe) thin films by electron beam physical vapor deposition (EBPVD). Previous studies showed that by exposing the substrate of the thin film to pre-heat environment, the changes of morphology and adatom mobility is expected. Furthermore, annealed influence in the thin film also will give better-quality thin films as the surface are expected to be smoother and flat. Three different annealed temperature is conducted on the samples, which are 400 C, 800 C and 1200 C. Structural changes such as transition from alpha phase to beta phase, is possible due to the presence of high temperature.1 -
PublicationModelling and Simulation using Finite Element Method of Surface Acoustic Wave Biosensor for Gas Detection Application( 2021-11-25)A surface acoustic wave (SAW) sensor detects changes in physical properties such as mass and density on its surface. Compared to other types of sensors, SAW sensor have a good stability, high selectivity and sensitivity, fast response, and low-cost. On the other hand, to design and optimize a SAW biosensor requires a long process including time and cost using conventional methods. Therefore, numerical simulation and computational modelling are useful and efficiently conduct analysis for the SAW biosensor. In this paper, a numerical simulation technique is used to analyse the SAW device sensitivity for the application of gas detection. The SAW biosensor can detect very small mass loading by changing its sensor resonance frequency. The two-dimensional (2D) device model is based on a two-port SAW resonator with a gas sensing layer. We made two design of SAW biosensor device with frequency of 872 MHz and 1.74 GHz. A gas with vary concentration from 1 to 100 ppm were used to determine the change of the device resonance frequency. As a result, the high frequency (1.74 GHz) device, shows that the resonance frequency is shifted larger than to the low frequency (872 MHz) device. In addition, the high frequency device offers five times more sensitivity than the low frequency device. By changing the sensor design, the sensor characteristics such as sensitivity can be altered to meet certain sensing requirements. Numerical simulation provides advantages for sensor optimization and useful for nearly representing the real condition.
1 -
PublicationCurrent development in interdigital transducer (IDT) surface acoustic wave devices for live cell in vitro studies: A review(MDPI, 2022-01-01)Zaman W.S.W.K.Acoustics have a wide range of uses, from noise-cancelling to ultrasonic imaging. There has been a surge in interest in developing acoustic-based approaches for biological and biomedical applications in the last decade. This review focused on the application of surface acoustic waves (SAW) based on interdigital transducers (IDT) for live-cell investigations, such as cell manipulation, cell separation, cell seeding, cell migration, cell characteristics, and cell behaviours. The approach is also known as acoustofluidic, because the SAW device is coupled with a microfluidic system that contains live cells. This article provides an overview of several forms of IDT of SAW devices on recently used cells. Conclusively, a brief viewpoint and overview of the future application of SAW techniques in live-cell investigations were presented.
1