Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. Modelling and Simulation using Finite Element Method of Surface Acoustic Wave Biosensor for Gas Detection Application
 
Options

Modelling and Simulation using Finite Element Method of Surface Acoustic Wave Biosensor for Gas Detection Application

Journal
Journal of Physics: Conference Series
ISSN
17426588
Date Issued
2021-11-25
Author(s)
Anas Mohd Noor
Universiti Malaysia Perlis
Ahmad Nasrul Norali
Universiti Malaysia Perlis
Zulkarnay Zakaria
Universiti Malaysia Perlis
Mazlee Mazalan
Universiti Malaysia Perlis
Yufridin Wahab
Universiti Malaysia Perlis
DOI
10.1088/1742-6596/2071/1/012022
Abstract
A surface acoustic wave (SAW) sensor detects changes in physical properties such as mass and density on its surface. Compared to other types of sensors, SAW sensor have a good stability, high selectivity and sensitivity, fast response, and low-cost. On the other hand, to design and optimize a SAW biosensor requires a long process including time and cost using conventional methods. Therefore, numerical simulation and computational modelling are useful and efficiently conduct analysis for the SAW biosensor. In this paper, a numerical simulation technique is used to analyse the SAW device sensitivity for the application of gas detection. The SAW biosensor can detect very small mass loading by changing its sensor resonance frequency. The two-dimensional (2D) device model is based on a two-port SAW resonator with a gas sensing layer. We made two design of SAW biosensor device with frequency of 872 MHz and 1.74 GHz. A gas with vary concentration from 1 to 100 ppm were used to determine the change of the device resonance frequency. As a result, the high frequency (1.74 GHz) device, shows that the resonance frequency is shifted larger than to the low frequency (872 MHz) device. In addition, the high frequency device offers five times more sensitivity than the low frequency device. By changing the sensor design, the sensor characteristics such as sensitivity can be altered to meet certain sensing requirements. Numerical simulation provides advantages for sensor optimization and useful for nearly representing the real condition.
File(s)
research repository notification.pdf (4.4 MB)
Views
1
Acquisition Date
Nov 19, 2024
View Details
google-scholar
Downloads
  • About Us
  • Contact Us
  • Policies