Options
Shahidah Arina Shamsuddin
Preferred name
Shahidah Arina Shamsuddin
Official Name
Shahidah Arina, Shamsuddin
Alternative Name
Shamsuddin, Shahidah Arina
Main Affiliation
Scopus Author ID
54785057000
Researcher ID
FWR-5498-2022
Now showing
1 - 3 of 3
-
PublicationSurface characterization study of nanoporous anodic aluminium oxide thin film synthesized by single-step anodization( 2021-05-03)
;Ismail J.Nanoporous anodic aluminium oxide (AAO) thin film electrodes were prepared by using a single step anodization method in 0.3 M oxalic acid at 40 V for 1 h. Electrolyte temperature was controlled and maintained at 15 °C by using ice water bath. After anodized, AAO surfaces were etched by using 5% phosphoric acid (H3PO4) solution at 30 °C to remove the AAO top rough surfaces and widening the pores. Effect of different etching duration to the pore widening was investigated at 10, 20 and 30 minutes, respectively. Regularity of the pores arrangements before and after etching were analysed by fast fourier transform (FFT) profile images that were generated from FESEM images. From observation, well ordered nanoporous structures were successfully revealed after top rough surfaces were removed by etching. Pores sizes were also found to be increased with the increasing of etching duration. Further investigations were done by x-ray diffraction (XRD) analysis and fourier transform infra-red spectroscopy (FTIR) to characterize and find out the crystallinity properties and functionalities of AAO thin film electrode surfaces. -
PublicationSynthesis of Zinc Oxide Nanoparticles via Cellar Spider Extract for Enhanced Functional Properties in Antimicrobial Activities( 2024-06-12)
;Afnan Uda M.N. ;Ibrahim N.H. ;Zain M.Z.M. ;Ilyas R.A.This study explores the green synthesis of zinc oxide nanoparticles (ZnO NPs) using cellar spider extracts as a sustainable alternative to traditional methods involving hazardous chemicals and radiation. The spider extracts effectively reduced zinc acetate dihydrate, yielding white precipitates indicative of ZnO NPs. Characterization through SEM revealed diverse morphologies, including spherical, rod-like, hexagonal, and uneven particles forming platelet-like aggregates. Further analyses, such as HPM, 3D nanoprofiler, and EDS, provided insights into size, shape, morphology, surface chemistry, thermal stability, and optical characteristics, quantifying the intended properties of the synthesized ZnO NPs. Antibacterial assays against E. coli and B. subtilis demonstrated significant antibacterial activity, affirming the nanoparticles' potential for antimicrobial applications. This green synthesis approach, validated through comprehensive characterization and quantitative measurements, offers a promising and environmentally friendly route for producing functional ZnO NPs.4 -
PublicationAnalysis on Silica and Graphene Nanomaterials Obtained From Rice Straw for Antimicrobial Potential( 2024-06-12)
;A Jalil N.H. ;Afnan Uda M.N. ;Ibrahim N.H.Baharum N.A.This study focuses on the encapsulation of silica and graphene nanoparticles and their potential applications. The encapsulation enhances the properties and effectiveness of these nanoparticles, with silica providing stability and graphene contributing to high surface area and electrical conductivity. Characterization of silica-graphene nanoparticles was conducted using various techniques including High Power Microscope (HPM), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and 3D Nano Profiler. The antimicrobial activity of silica, graphene, and silica-graphene nanoparticles was evaluated using a disc diffusion assay against E. coli and B. subtilis at varying concentrations. Results showed significant antimicrobial activity, with the inhibition zone being directly proportional to the concentration. Silica-graphene nanoparticles demonstrated higher efficacy against E. coli compared to B. subtilis, attributed to differences in cell wall structure. Statistical analysis using ANOVA confirmed significant differences in antimicrobial activity among the tested components.4