Now showing 1 - 2 of 2
  • Publication
    Role of metals content in spinach in enhancing the conductivity and optical band gap of chitosan films
    ( 2015)
    Irwana Nainggolan
    ;
    Devi Shantini
    ;
    Tulus Ikhsan Nasution
    ;
    Blend of chitosan and spinach extract has been successfully prepared using acetic acid as a solvent medium to produce chitosan-spinach films. The conductivity measurements showed that chitosan-spinach films for all ratios of 95 : 5, 90 : 10, 85 : 15, and 80 : 20 had better conductivity than the chitosan film. The optical band gap reduced with the addition of the spinach extract into chitosan. Chitosan-spinach film with the ratio of 85 : 15 gave the best electrical properties in this work with the conductivity of 3.41 × 10−6 S/m and optical band gap of 2.839 eV. SEM-EDX spectra showed the existence of potassium, phosphorus, sulphur, iron, and oxygen in chitosan-spinach films. AFM image showed that the surface morphology of the films became rougher as the spinach incorporated into chitosan. The minerals which exist in spinach extract play a role in enhancing electrical properties of chitosan film.
  • Publication
    Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from A1-Mn alloys
    The influence of temperature of oxalic acid on the formation of well-ordered porous anodic alumina on Al-0.5 wt% Mn alloys was studied. Porous anodic alumina has been produced on Al-0.5 wt% Mn substrate by single-step anodising at 50 V in 0.5 M oxalic acid at temperature ranged from 5°C to 25°C for 60 minutes. The steady-state current density increased accordingly with the temperature of oxalic acid. Hexagonal pore arrangement was formed on porous anodic alumina that was formed in oxalic acid of 5, 10 and 15°C while disordered porous anodic alumina was formed in oxalic acid of 20 and 25°C. The temperature of oxalic acid did not affect the pore diameter and interpore distance of porous anodic alumina. Both rate of increase of thickness and oxide mass increased steadily with increasing temperature of oxalic acid, but the current efficiency decreased as the temperature of oxalic acid increased due to enhanced oxide dissolution from pore wall.