Now showing 1 - 10 of 30
  • Publication
    Design and Fabrication of Multichannel PDMS Microfluidic
    ( 2021-12-14) ; ;
    Muhammad Nur Afnan Uda
    ;
    ;
    Thivina V.
    Microfluidic delivers miniaturized fluidic networks for processing liquids in the microliter range. In the recent years, lab-on-chip (LOC) is become a main tool for point-of-care (POC) diagnostic especially in the medical field. In this paper, we presented a design and fabrication on multi disease analysis using single chip via delivery of fluid with the multiple transducers is the pathway of multi-channel microfluidic based LOC's. 3 in 1 nano biosensor kit was attached with the microfluidic to produce nano-biolab-on-chip (NBLOC). The multi channels microfluidic chip was designed including the micro channels, one inlet, three outlet and sensor contact area. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The LOC system was designed using Design Spark Mechanical software and PDMS was used as a medium of the microfluidic. The microfluidic mold and PDMS microfluidic morphological properties have been characterized by using low power microscope (LPM), high power microscope (HPM) and surface profiler. The LOC system physical was experimental by dropping food coloring through the inlet and collecting at the sensor contact area outlet.
  • Publication
    Gold Nanoparticles Enhanced Electrochemical Impedance Sensor (EIS) for Human Papillomavirus (HPV) 16 Detection E6 region
    ( 2020-07-09)
    Amrul Muhadi A.S.
    ;
    ; ; ;
    Rejali Z.
    ;
    Afzan A.
    ;
    Muhammad Nur Afnan Uda
    ;
    ;
    Hong V.C.
    The persistent infection by high risk HPV is a necessary but not sufficient cause of this cancer which develops over a long period through precursor lesions which can be detected by electrochemical impedance sensor. The HPV driven molecular mechanisms underlying the development of cervical lesions have provided a number of potential biomarkers for both diagnostic and prognostic use in the clinical management of women with HPV related cervical disease and these biomarkers can also be used to increase the positive predictive value of current methods. The most influential methods for the detection and identification of HPV using gold nanoparticle (GNP) included electrochemical impedance sensor will visit their sensitivity, selectivity and characteristic detection on synthetic target which are complement of the DNA, non-complement of the DNA and mismatch of the DNA. In difference concentration of synthetic target, which stage can get the exactly value to determine the HPV in strain 16 was evaluated in this research studies.
  • Publication
    Designing DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles
    ( 2022-10-01)
    Jaapar F.N.
    ;
    ; ; ; ;
    Halim F.S.
    ;
    ; ; ;
    Muhammad Nur Afnan Uda
    ;
    Nadzirah S.
    ;
    Rejali Z.
    ;
    Afzan A.
    ;
    Zakaria I.I.
    The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5′ COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3′, while 5′COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3′ as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
  • Publication
    New Development Quantification Methods for Salt Iodine and Urinary Iodine Using Microfluidics Based Nanotechnology
    ( 2020-03-18)
    Nur Hulwani Ibrahim
    ;
    ; ; ; ;
    Muhammad Nur Afnan Uda
    In Malaysia, the first Iodine Deficiency Disorders (IDD) survey was conducted in 1996 and it was discovered that Peninsular Malaysia did not have IDD problem until latter studies showed goitre occurrence of 34.7% in Hulu Langat district and urinary iodine lower than the adequate level of (100-199 ug/L) in Perak and Pahang states (Selamat et al., 2010). Baseline and periodical sampling of children and pregnant woman urine and imported salt commodities for the consumption of the population is mandatory for iodine measurement. Thus, development of quantitative methods of measurement of salt and food iodine is crucial for implementation of the USI program nationwide. In this study, interdigitated electrode (IDE) biosensor, a rapid, sensitive and selective method has been developed to determine the iodine content in both urine and salt. This method includes functionalization and silanization step using 3-aminopropyl triethoxysilane (APTES). The I-V characterization of IDE biosensor was performed using (Keithley 2450), Kickstart software and Probestation. It measures the amount of current flow through IDE which is directly proportional to the concentration of iodine in both urine and salt. Hence, IDE biosensor is proven to be a rapid, selective, sensitive method and can be developed as a new nanotechnology for the elimination of Iodine Deficiency Disorders (IDD) among children and pregnant woman.
  • Publication
    Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors
    ( 2022-01-01) ; ; ;
    Nadzirah S.
    ;
    Salimi M.N.
    ;
    ; ;
    Muhammad Nur Afnan Uda
    ;
    Rozi S.K.M.
    ;
    Rejali Z.
    ;
    Afzan A.
    ;
    Azan M.I.A.
    ;
    Yaakub A.R.W.
    ;
    Hamzah A.A.
    ;
    Dee C.F.
    The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.
  • Publication
    Production and characterization of graphene from carbonaceous rice straw by cost-effect extraction
    ( 2021-05-01) ; ; ;
    Halim N.H.
    ;
    ;
    Muhammad Nur Afnan Uda
    ;
    Anbu P.
    This paper describes the synthesis of graphene-based activated carbon from carbonaceous rice straw fly ash in an electrical furnace and the subsequent potassium hydroxide extraction. The produced graphene has a proper morphological structure; flakes and a rough surface can be observed. The average size of the graphene was defined as up to 2000 nm and clarification was provided by high-resolution microscopes (FESEM and FETEM). Crystallinity was confirmed by surface area electron diffraction. The chemical bonding from the graphene was clearly observed, with –C=C– and O–H stretching at peaks of 1644 cm−1 and 3435 cm−1, respectively. Impurities in the graphene were found using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The measured size, according to zeta-potential analysis, was 8722.2 ± 25 nm, and the average polydispersity index was 0.576. The stability of the mass reduction was analyzed by a thermogravimetric at 100 Â°C, with a final reduction of ~ 11%.
  • Publication
    Voltammetric DNA Biosensor for Human Papillomavirus (HPV) Strain 18 Detection
    ( 2020-07-09)
    Mhd Akhir M.A.
    ;
    ; ; ;
    Rejali Z.
    ;
    Afzan A.
    ;
    ;
    Muhammad Nur Afnan Uda
    ;
    This research was developed to focus on the study of the voltammetric DNA biosensor for the detection of HPV strain 18. In this research, electrical DNA biosensor was expected to detect HPV strain 18 more efficiently by using electrical characterization. In this project, device inspection was conducted to make sure the functional of the gold interdigitated electrode (IDE) by using Scanning Electron Microscope (SEM). 3-Aminopropyl Triethoxysilane (APTES) solution was used for the process of surface modification to form the amine group on the surface of the device to facilitate the attachment of the DNA probe. In this project, synthetic DNA sample and DNA from the saliva of several Biosystems Engineering students were used as the target DNA. The current-voltage (I-V) electrical characterization was conducted to detect the presence of HPV strain 18 in both DNA samples. As the results, perfect alignment between the electrodes on the IDE was detected under SEM. Surface modification of the biosensor successfully conducted which is the covalent bond between APTES and DNA probe increase the electrical. Synthetic DNA shows the presence of HPV strain 18 while there was no HPV strain 18 detected in the DNA from saliva samples.
  • Publication
    Synthesis of zinc oxide nanoparticles via cellar spider extract for enhanced functional properties in antimicrobial activities
    This study explores the green synthesis of zinc oxide nanoparticles (ZnO NPs) using cellar spider extracts as a sustainable alternative to traditional methods involving hazardous chemicals and radiation. The spider extracts effectively reduced zinc acetate dihydrate, yielding white precipitates indicative of ZnO NPs. Characterization through SEM revealed diverse morphologies, including spherical, rod-like, hexagonal, and uneven particles forming platelet-like aggregates. Further analyses, such as HPM, 3D nanoprofiler, and EDS, provided insights into size, shape, morphology, surface chemistry, thermal stability, and optical characteristics, quantifying the intended properties of the synthesized ZnO NPs. Antibacterial assays against E. coli and B. subtilis demonstrated significant antibacterial activity, affirming the nanoparticles' potential for antimicrobial applications. This green synthesis approach, validated through comprehensive characterization and quantitative measurements, offers a promising and environmentally friendly route for producing functional ZnO NPs.
  • Publication
    Diagnosing metabolic diseases by nanoparticle immobilization
    Metabolic disease is a group of conditions that expand the risk of heart disease, stroke, and type 2 diabetes. High blood sugar, blood pressure, excess body fat around the waist, and abnormal cholesterol or triglyceride levels are included in this kind of metabolic disease that seems dangerous to human beings. The development of metabolic disease happened when the organs, such as the liver and pancreas did not function properly and triggered metabolic disease. Metabolic diseases happen at the point when irregular compound responses in the human body can modify the typical metabolic procedures. Metabolic diseases can be defined as an inherited single gene, mostly autosomal recessive. The principal classes of metabolic diseases include metabolic brain diseases, calcium metabolism disorder, acid-base imbalance, and glucose metabolism disorders. Diagnosing metabolic diseases was tedious and depending on which type of disease was involved, and currently, by using DNA tests, we can identify the disease but it takes several hours and only a professional person in charge can analyze the result. Advances in diagnosing metabolic diseases by nanoparticle immobilization establish a promising exploration area with favorable impacts on the treatment of diseases. Nanotechnology based on nanoparticle implementation was useful for the metabolic disorder diagnosis to prevent the disease from going viral to develop. Biosensor based on nanoparticles has been applied in several detections including metabolic illnesses to improve accessible analytical methods. Point-of-care (POC) sensor devices have been developed for metabolic disease and offer outcomes, quicker, simpler and at a lower cost than conventional methods. It also can be used in remote regions for metabolic diagnosis. In this chapter, different nanoparticle immobilization has been discussed to diagnose metabolic diseases by using it in clinical approach.
  • Publication
    Arthropods-mediated green synthesis of Zinc oxide nanoparticles using cellar spider extract a biocompatible remediation for environmental approach
    ( 2024-06) ; ;
    M. A. R. Irfan
    ;
    ; ; ;
    MRM Huzaifah
    ;
    Maimunah Mohd Ali
    ;
    Nur Hulwani Ibrahim
    ;
    Muaz Mohd Zaini Makhtar
    ;
    ; ; ; ; ;
    Mahfuz Affif Mohd Ruslan
    ;
    This study presents an eco-friendly approach to synthesizing zinc oxide nanoparticles (ZnO NPs) using extracts from cellar spiders, addressing environmental and health concerns associated with conventional methods. The spider extract efficiently reduced zinc acetate dihydrate, and the synthesized ZnO NPs underwent comprehensive quantitative characterization, including size, shape, morphology, surface chemistry, thermal stability, and optical properties using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential measurements, thermogravimetric analysis (TGA), and UV-vis spectroscopy. The nanoparticles exhibited intended characteristics, and their adsorption capability for methylene blue (MB) was quantitatively assessed using the Freundlich isotherm model and pseudo-second-order kinetic model, providing numerical insights into MB removal efficiency. The study demonstrates the potential of these green-synthesized ZnO NPs for applications in environmental remediation, wastewater treatment, and antibacterial therapies, contributing to both sustainable nanomaterial development and quantitative understanding of their functional properties.