Now showing 1 - 10 of 15
  • Publication
    Effect of operational time on the chemical oxygen demand performance of sequencing batch reactor treating disperse dye synthetic wastewater
    ( 2021-11-26)
    Rashid N.A.
    ;
    Mohtar S.A.W.
    ;
    ;
    Omar M.F.
    ;
    Abdullah M.A.H.
    ;
    Noordeka A.
    This work examines the effect of operational time of 6 hours on the removal of disperse dye from synthetic textile wastewater. Experiments were conducted daily at fill, react, settle, draw, and idle phase at 1 h, 1 h, 2 h, 1 h, 1 h respectively. The results showed that the highest removal efficiency of COD reached 77 %. Short operational time resulted in low COD removal efficiencies of disperse dye. The findings also revealed that when applying optimum operational time, sequencing batch reactor will achieve the highest growth of the bacteria responsible for the degradation of COD. When operational time increases, degradation becomes the dominant removal mechanisms of COD.
  • Publication
    Hydroxyl radical formation in the hybrid system of photocatalytic fuel cell and peroxi-coagulation process affected by iron plate and UV light
    ( 2020-04-01)
    Nordin N.
    ;
    ; ;
    Ibrahim A.H.
    ;
    ;
    Lee S.L.
    ;
    Ong Y.P.
    The hybrid electrochemical system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a combined technology of advanced oxidation process (AOP) which involve the hydroxyl radical formation for simultaneous degradation of organic pollutant and electricity generation. The p-nitrosodimethylaniline (RNO) spin trapping technique was applied by analyzing the RNO bleaching performance to detect the OH[rad] at the PFC and PC reactors. The presence of UV light showed higher RNO bleaching rate at the PFC reactor (11.7%) with maximum power density (Pmax = 3.14 mW cm−2). Results revealed that the optimum of maximum power density was observed at iron plate size of 30 cm2. UV light became a limiting factor in the PFC system as a power source in the PFC-PC system. Meanwhile, iron plate plays an important role to supply the soluble Fe2+ ions by oxidation process and become a suitable catalyst for in-situ production of H2O2 and OH[rad] through the PC process to degrade the organic molecules.
  • Publication
    Partially Replacement of Cement by Sawdust and Fly Ash in Lightweight Foam Concrete
    The rapid growth of population has led to increased demand for fast, affordable and quality housing development. Today, the construction industry in Malaysia has shifted from conventional methods to Industrial Building Systems (IBS). The most commonly used IBS component is precasat concrete with lightweight foam concrete. This study focuses on the main component of foam lighweight concrete, which is a partially replacement of cement by sawdust and fly ash. Among the features of lightweight concrete is density below 1800 kg/m3. Therefore, the objectives of this study is to determine the effects of sawdust and fly ash as part of cement replacement in terms of mechanical properties (compressive strenght) and physical properties (water absorption). In addition, this study also determine the optimum percentage of cement replacement by sawdust and fly ash in building material. The percentage of saw dust and fly ash used in this study as a partial replacement cement are 5%, 10%, 15% and 20%. The results show that increasing the percentage of mix propotion will increase the water absorption rate as well as decrease the compressive strenght of strength. Also, the density and compressive strength of lightweight foam concrete will decrease as the percentage of partial replacement cement increases. According to JKR Standard Specification for Building Works that referred in Malaysia, the minimum compression strength of lightweight foam concrete allowed for hollow blocks is 2.8 N/mm2. The results obtained from this study show lightweight concrete blocks using saw dust and fly ash as part of the cement replacement meet the standards and can be commercialized in the industrial building system development.
      29  4
  • Publication
    Performance of sequencing batch reactor for the removal of chemical oxygen demand from waste cooking oil
    ( 2022-06-01)
    Abdul Rashid N.B.
    ;
    ; ; ;
    Permana Putri E.B.
    ;
    Syafiuddin A.
    The production of highly polluted waste cooking oil (WCO) that contains both inorganic and organic compounds has been increased in Malaysia particularly in food industries. This study was aimed to utilize a sequencing batch reactor (SBR) in order to investigate the aerobic treatment of WCO. The system was operated at pH ranging from 4 to 5 and temperature ranged from 25°C to 31°C. The SBR reactor was fabricated using Perspex with a working volume of 2 L. Experiments were con-ducted daily at fill, react, settle, draw, and idle phase at 1, 1, 2, 1, and 1 h, respectively. The chemical oxygen demand (COD) and turbidity were assessed in determining SBR performance. Highest COD removal and turbidity values were at 67% and 0.94 NTU, respectively. A stable effluent quality was achieved after 13 d of operational investigation. In general, the SBR treatment was able to achieve acceptable discharge limit for the final treated effluent.
      2  34
  • Publication
    The Application of Coconut Fiber as Insulation Ceiling Board in Building Construction
    This study considers the applications of natural fiber composites in affordable housing projects located in Malaysia with the goal of addressing issues of the thermal comfort. Roof thermal insulation is one of the effective methods that can save cooling energy in places with an equatorial climate especially in Malaysia. The use of recycled products or industrial waste materials is now a potential trend in the industry. Therefore, natural fiber was chosen as a material for the ceiling board in this study. During the day, heat can enter the room from the roof so that insulation material is needed to reduce heat flux by maintaining the temperature of the building. The problems faced by consumers are cost increases due to the use of large amounts of electricity. Besides, asbestos use becoming less frequent because the government has banned its use as a ceiling, side panels, roofing material, asbestos cement-pipes, many types of fireproof and insulation material. The objectives of this study was to determine the mechanical and physical properties of coconut fiber with fire retardant paint as a thermal comfort for ceiling board. The next objective is to study the percentage difference in sodium hydroxide and sodium chloride during the treatment of coconut fiber. The data result is that the fiber is ideal as an insulating material for the house ceiling board because it has a low temperature quality of 0.225W. The water absorption value was as high as 11.20% which is slightly lower than previous studies. Finally, the density test has a value of 74.23 kg / m3 where the fibers are lighter than the other fibers even after immersion with different sodium hydroxide and sodium chloride. In addition, this study achieved a house ceiling that could help reduce the heat entering the house by 0.225W which used only a thickness of 10mm. The use of these fibers does not need the thickness between 20 mm or 40 mm. Therefore, it successfully lowered home electricity consumption in hot weather. It was found that the difference in temperature drop between 0 % and 3 % was 0.4W.
      36  6
  • Publication
    Aerobic granules cultivated using industrial rubber wastewater: Effect of size distribution and Performance of granules.
    Sequential batch reactors (SBR) have been successfully developed granular sludge using industrial rubber wastewater on a cylindrical shaped SBR. SBR was introduced to industrial wastewater with varying chemical oxygen demand (COD) loadings from as low as 0.01 to 0.28 kgCOD/m3/d. First phase of experiment utilized 24 hours cycle time whilst second phase of experiment utilized 4 hours cycle time. Granules were successfully developed at the second phase (4 hours) of experiment. Fortunately, the overall performance for both cycles were excellent. COD removal efficiency throughout the experiment was kept at about 78 % to 98 %. Although higher COD removal was observed for both cycle, granulation did not occur in the first phase (24 hours). Decrement of cycling time to 4 hours promotes the growth of dense and structured sludge granules.
      5  28
  • Publication
    Analysis of lead (Pb) leaching from stabilized/solidified sample containing rubber sludge waste treated using ordinary Portland cement and rice husk ash
    (American Institute of Physics Inc., 2022-11-18) ;
    Lead (Pb) contaminated sludge originating from industrial rubber wastewater treatment has become a serious problem if been direct disposed in landfill. Lead has been recognized as harmful toxic heavy metals and capable to cause carcinogenic effect to human and other living creatures. The leaching of Pb from this waste can leads to more severe environmental problem associated with the contribution by water run-off, groundwater and surface water contaminations. An attempt to treat the rubber sludge using ordinary Portland cement and rice husk ash using stabilization/solidification technique has been performed in this study. Objective of this study is to evaluate the effectiveness of ordinary Portland cement and rice husk ash mixtures in reducing the leachability of lead in stabilized/solidified specimen. Based on the findings, it is revealed that lead from leaching of sample batches prepared (i.e. OWR1, OWR2 and OWR3) have successfully reduced as compared to the control batches. The combination of ordinary Portland cement and rice husk ash were proven to reduce the leaching of lead into the leachant closed to acceptable limit which was at 15?ppm.
      3  6
  • Publication
    Investigation of Biosand Filter (BSF) on the Treatment Performance of Industrial Latex Wastewater
    Biosand Filters (BSF) has great potential to improve the water quality. BSF is used extensively in the treatment of drinking water in rural areas because it is affordable, simple to use, and has a high removal efficiency. This study used actual latex effluent to examine the effectiveness of SBR. The growth of the biolayer in the BSF is also observed. This study analyzes consistent and stable results for COD, DO and NH4-N+. With removal performance ranging from 87 % to 99 %. DO value for BSF varied from lowest value of 1.5 mg/L to 8mg/L. Overall, the BSF was capable of producing treated water for water reclamation.
      37  2
  • Publication
    Contaminants’ immobilisation of incinerated air pollution control residue and rubber sludge using respectively Calcium Aluminate cement and ordinary portland cement with rice husk ash via stabilisation/solidification technique
    Treatment of incinerated wastes has become a challenge as the production of these wastes increased each year which become source of hazard to human and ecosystem. Corresponded to that, the first stage of experiment was to treat air pollution control (APC) residue from municipal solid waste (MSW) incineration using two types of calcium aluminate cements (CAC) known as Secar 71 and Ciment Fondu. While the second stage of experiment focused on the treatment of local incinerated waste from rubber gloves industry known as incinerated rubber sludge (IRS) using combination of ordinary Portland cement (OPC) and rice husk ash (RHA) mixtures which comprises of 50% rice husk activated carbon and 50% rice husk ash. The aim of this research is to immobilise heavy metals and non hazardous contaminants such as chlorides and sulphates within these wastes using stabilisation/solidification (S/S) technique. The objectives of this study were to study the effects of waste and RHA addition to compressive strength, to assess the effectiveness of RHA in immobilising the contaminants via analysing the leaching pattern and also to evaluate the stability and disintegration of the mineral phases from the stabilised/solidified sample. Series of factorial design were used to prepare mix formulations for CAC and OPC sample batches. As for APC residue treated with CAC, the focused is more towards incorporating the chlorides and sulphates in respective minerals known as Friedel’s salt and ettringite. Treatment of IRS using OPC was aided by including mixtures of RHA to functional as activated carbon and provide high silica content for enhancing sample strength. Findings on first stage of experiment show that, Friedel’s salt and ettringite were able to be formed successfully to immobilise chloride and sulphate. Whereas the second stage of experiment revealed that, there was reduction in terms of heavy metals and chlorides concentration that leached out from stabilised/solidified sample containing incinerated rubber sludge as RHA been incorporated into the batch samples as compared to OPC with IRS alone. Sulphates were able to be fully immobilised in the presence of RHA in the sample. In terms of unconfined compressive strength, most of the RHA addition batch samples have shown remarkable results as all compressive strength findings surpassed the minimum requirement of sanitary disposal which was at 1 MPa even at 50% waste addition or 1:1 waste to binder ratio. These findings have derived to conclusion that RHA is an excellent material to be included in hazardous waste treatment using S/S whereby the treated waste is also suitable to be reconsidered and utilised as secondary material for construction such as underneath road fillers or base foundation.
      3  15
  • Publication
    Studies on factors affecting unconfined compressive strength of industrial rubber sludge containing heavy metals treated using ordinary Portland cement via stabilization/solidification technique
    High concentration of selected heavy metals within industrial rubber sludge collected from rubber industry wastewater treatment plant has classified the waste as scheduled waste. Special treatment to the waste by using ordinary Portland cement via solidification/stabilization (S/S) technique has been performed in laboratory scale. The objective of this research is to determine related factors that affect unconfined compressive strength (UCS) performance of stabilised/solidified (s/s) cube specimens which contains industrial rubber sludge waste. Other parameters observed include the curing condition (i.e. air and water immersion curing method), waste composition, specimen age and density. The prepared fresh mix were cast in plastic moulds in order to produce 50 mm3 cubical shape specimens and leaved to set approximately 24 to 48 hours. The prepared specimen batches are S1 (90% OPC + 10% waste), S2 (70% OPC + 30% waste), S3 (50% OPC + 50% waste). UCS was performed on respective specimen age of 7 and 28 days. Positive results were obtained as relatively the average compressive strength of 7 day air cured specimens reach 5.25 MPa, 5.28 MPa, and 2.16 MPa for S1, S2 and S3.While, 28 days air cured specimens results are 9.59 MPa, 8.01 MPa, and 1.46 MPa for S1, S2, and S3 respectively. As for water immersion, the compressive strengths are 8.19 MPa, 4.93 MPa, and 1.90 MPa for 7 days, and 7.75 MPa, 10.10 MPa, and 2.11 MPa for 28 days at respective S1, S2 and S3 sequence. As conclusion, the specimens prepared passed the minimum requirement for secured landfill disposal which is at 1 MPa.
      3  37