Now showing 1 - 10 of 17
  • Publication
    Remazol orange dye sensitized solar cell
    Water based Remazol Orange was utilized as the dye sensitizer for dye sensitized solar cell. The annealing temperature of TiO2 working electrode was set at 450 °C. The performance of the device was investigated between dye concentrations of 0.25 mM and 2.5 mM at three different immersion times (3, 12 and 24 hours). The adsorption peak of the dye sensitizer was evaluated using UV-Vis-Nir and the device performance was tested using solar cell simulator. The results show that the performance was increased at higher dye concentration and longer immersion time. The best device performance was obtained at 0.2% for dye concentration of 2.5 mM immersed at 24 hours.
  • Publication
    Characteristics of multiwavelength fiber laser employing semiconductor optical amplifier in nonlinear optical loop mirror with different length polarization maintaining fiber
    In this paper, we propose and demonstrate generated characteristics of a multiwavelength fiber laser based on semiconductor optical amplifier in a nonlinear optical loop mirror with different length of polarization maintaining fiber. The configuration comprises 3-dB optical coupler, semiconductor optical amplifier and, 2 meters and 10 meters of polarization maintaining fiber. Characteristics of multiwavelength fiber laser are studied through the use of polarization maintaining fiber at different lengths. The experimental results revealed the number of lasing lines increases with the increment of the polarization maintaining fiber length. The polarization maintaining fiber with 10 meters of length has the ability to generate a higher number of lasing lines up to 47 signals with semiconductor optical amplifier injected current at 180mA, respectively. However, in terms of average peak power and average optical signal to noise ratio, the 2 meter of polarization maintaining fiber length has the capability to produce a higher value which is 0.45mW at 250mA of semiconductor optical amplifier driven current and 28.86dB at 170mA of semiconductor optical amplifier driven current, respectively. Furthermore, it is observable that this configuration capable to generate a wider bandwidth which is operating in the conventional (C) band to long (L) band at the room temperature.
  • Publication
    Characterization of all-optical Tofolli and Peres gates employing optimized SOA-NOLM
    In this work, all-optical reversible gates namely Tofolli and Peres are studied and characterized. The gates utilize semiconductor optical amplifier (SOA) in nonlinear loop optical mirror (NOLM). The reversible gates are performed at data rate 10 Gb/s with narrow Gaussian pulses as input signals. Delay of 130 ps and injection current of 170 mA have displayed the optimum outputs in the SOA-NOLM. Extinction ratio is greatly reduced, thus less noise interferes the logic operation in this simple technique. It is observed that Peres gate has shown a higher output power compare to Toffoli gate. This could be due to multiple amplification that are experienced by the signals. Other than the gain, injection current and delay are shown to give major effect in producing the correct bits at the outputs. The SOA-NOLM also can be cascaded for other arithmetic signal processing operation at high frequency. It is also recorded that the design consumes low power especially in small signal gain process. Thus, the design indicates its versatility to be executed in photonic integrated circuits for ultrafast signal control through fiber networks.
  • Publication
    The production of Malaysia bamboo charcoal (Gigantochloa albociliata) as the potential absorbent
    Bamboo charcoal was successfully carbonized at 500 °C and 800 °C using Malaysia buluh madu (Gigantochloa albociliata). Structural analysis was done using Atomic Force Microscopy (AFM) in two different solvents; ethanol and DI water. The functional groups of bamboo charcoal were confirmed using Fourier Transform Infrared Spectroscopy (FTIR). The adsorption property of bamboo charcoal solution was investigated at different concentrations of 0.2, 0.4 and 0.7 mg/mL, using methylene blue test and characterized using UV-Vis Spectroscopy. Based on the adsorption investigation, it shows that the adsorption was increased as the concentration increased. It was also shown that at higher temperature and longer duration time, the adsorption process is improved.
  • Publication
    UWB triplet and quadruplet pulses generation employs nonlinear effect in semiconductor optical amplifier nonlinear loop mirror
    ( 2020-01-08)
    Zahari, Suhaila Mohd
    ;
    ; ; ;
    Ghazali N.F.
    ;
    Shahimin M.M.
    Ultrawideband (UWB) triplet and quadruplet pulses generation exploits nonlinear effect in semiconductor optical amplifier (SOA) in nonlinear loop mirror (NOLM) is investigated in this work. Two signals are transmitted through the SOA-NOLM simultaneously to create cross-phase modulation (XPM) effect. Firstly, the XPM causes the production of doublet which later combines for creation of triplet and quadruplet. This technique engages a proper tuning of optical delay and a selection of suitable power in all loops. Besides, injection current of the SOAs also governs the formation of these pulses. Although, frequency of the signals can be varied accordingly, the pulses are limited to certain adjustment that shifted its position in time domain. Furthermore, the set up can also be assessed for monocycle and doublet pulses by extracting the output at several positions. It can be concluded that the design may work as multiple pulses generation. All pulses are examined and compared with their electrical spectrum counterpart for validity of this approach.
  • Publication
    Optimization of wireless power transfer using artificial neural network: A review
    Wireless power transfer (WPT) is widely explored and applied nowadays because of its simplicity in transferring power without using wire, easy maintenance, and equipment mobility. Due to mobility and compatibility attributes, WPT is utilized in powering biomedical devices, small electronic equipment, wireless sensor, mobile phones, and high voltage applications (eg, electric vehicles). The implementation of artificial neural network (ANN) in WPT has emerged as a powerful/prominent tool for estimating the performance parameters due to its learning and significant features. Such implementation can minimize design complexity and time-consuming calculations. An early application of ANN employs the information derived from the collectively measured processes for training the ANN algorithm. After a suitable training process, the network output can be considered in place of computationally thorough representations to speed up the result search. To obtain precise result and optimize the parameters in WPT, several popular ANN algorithms have been used by researchers. This review paper highlighted the latest research specifically regarding the implementation of ANN in WPT, which included the types of ANN implemented in WPT, current WPT problem investigation that used ANN, and a comparison between the techniques. Moreover, the challenges and constraints of ANN techniques were elucidated at the end of this paper.
  • Publication
    Critical analysis of stability and performance of organometal halide perovskite solar cells via various fabrication method (Review)
    ( 2017)
    Suriati Suhaimi
    ;
    ; ; ;
    Vithyacharan Retnasamy
    ;
    Mukhzeer Mohamad Shahimin
    Organometal halide perovskite solar cells (Omh-PSCs) have attracted attention due to its unique electrical and optical properties. Ideally, the Omh-PSCs should remain free from degradation under normal operating conditions for several years, preferably tens of years. In order to produce high power conversion efficiency with low potential of degradation, different fabrication methods have been developed. The reported stability of perovskite films can vary significantly and reported to decay substantially up to 20% of its original performance. A thorough understanding of fabrication process upon the stability of the device is regarded as crucial to pave the way for future endeavors. This review summarized and highlighted the recent research of fabrication methods that gave an impact to the stability of perovskite devices.
  • Publication
    Multiwavelength fiber laser employing semiconductor optical amplifier in nonlinear optical loop mirror with polarization controller and polarization maintaining fiber
    ( 2020-01-08)
    Husshini N.F.H.
    ;
    ; ;
    Shahimin M.M.
    ;
    ; ;
    Al-Asadi H.A.A.
    ;
    Raghavendra C.G.
    This paper demonstrates multiwavelength fiber laser employing semiconductor optical amplifier in nonlinear optical loop mirror with polarization controller and polarization maintaining fiber. The configuration consists of a 3-dB coupler, polarization controller and several lengths of polarization maintaining fiber. The results showed a single polarization controller with 5 meters of polarization maintaining fiber length generated 36 of lasing lines at 160mA of semiconductor optical amplifier current. In addition, for the average peak power and average optical signal to noise ratio, the 2 meters of polarization maintaining fiber length with single polarization controller in the nonlinear optical loop mirror shows higher values, 0.55mW at 210mA and 31.98dB at 210mA, respectively. Both gain media have a wider bandwidth operating in the C-band and L-band at room temperature.
  • Publication
    Generation Orbital Angular Momentum Modes Using Metasurfaces
    The purpose of this study is to investigate how numerous orbital angular momentum (OAM) modes may be produced by mixing acoustic plane beams with different metasurfaces. This study proposes a novel metasurface that may be simulated in order to generate OAM beams. Multi-beam and multi-mode terahertz wave incidence are produced utilizing vortex modes in the beams. The study of suitable OAM superpositions of waveguide eigenmodes is done using COMSOL Multiphysic, followed by a description of the software's usage and examples of challenges involved. With the existence of these studies, we can also prove that the mode can be produced completely with the results that have been studied. Based on the results obtained, an objective was achieved, which is to design the feature of the vortex beam modes. These results include the construction of a multi-functional vortex beam based on a theoretical model of phase gradient distribution. Also, by using metasurface mimics to specify a periodic structure specified by the user from the built-in unit cell, and the beam was attenuated and split into two paths inside the thin layer. Finally, the simulation process between 2D and 3D is very significant because the mesh and geometry in a design are very different, but generating a beam using COMSOL already has a specific module, namely the wave optic module, which can be used to predict the beam modes.
      1  16
  • Publication
    Modeling on impact of metal object obstruction in urban environment for internet of things application in vehicular communication
    Objects such as vehicles are considered one of challenging obstruction on the road and very little attention has been made to address its significance on the wireless signal. As such, this paper validates the impact of vehicle obstruction on signal propagation using received signal strength indicator (RSSI) based on the wireless channel measurements of realistic environmental obstruction at 2.4 GHz frequency band. Low mobility IEEE 802.15.4 XBee S2C compliant device which is designed to collect received signal power was used and these devices were deployed at area congested with cars. The channel measurements were conducted on LOS car parking area with two scenarios; single-sided and double-sided vehicle obstruction which mimics the obstruction of metal objects. The effect of existing vehicle on the signal propagation is demonstrated based on RSSI and RMSE. The attenuation profile of vehicular obstruction on wireless signal is modeled and compared with large-scale propagation models. Results show that metal object significantly reduce transmission range and signal power. The findings may incite for future implementation of cooperative deployment program and internet of things (IoT) applications in vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication.
      1  5