Options
Muhammad Faheem Mohd. Tahir
Preferred name
Muhammad Faheem Mohd. Tahir
Official Name
Muhammad Faheem, Mohd. Tahir
Alternative Name
Muhammad Faheem, T. M.
Tahir, Faheem
Faheem, Mohd Tahir Muhammad
Tahir, Muhammad Faheem
Tahir, Muhammad Faheem Mohd
Tahir, M. F.M.
Main Affiliation
Scopus Author ID
57211574727
Researcher ID
AAT-9691-2021
DWS-8186-2022
IHM-2046-2023
Now showing
1 - 10 of 28
-
PublicationStudy on the effects of anodizing voltage to the AAO thin film dimensional properties synthesized by single step anodization method( 2021-05-03)Anodic aluminium oxide (AAO) thin film electrodes were synthesized by using a single step anodizing method in 15 °C of 0.3 M oxalic acid at five different anodizing voltage ranging from 20 V to 60 V, respectively. The effect of anodizing voltage to the AAO dimensional properties were about to be investigated. Morphological observations were all done by FESEM where the measurements and calculation were made by using ImageJ and formulas. To ensure that the pore sizes were totally depended on the anodizing voltage, etching process were done at constant duration for all samples. The correlation between all AAO dimensional properties like pores size, interpore distance, wall thickness, pore density, percentage of porosity and nanoporous oxide thickness were presented in a linear graph.
-
PublicationMechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age( 2023)
;Ikmal Hakem A. Aziz ;Jitrin Chaiprapa ;Catleya Rojviriya ;Petrica Vizureanu ;Andrei Victor SanduThis paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes. -
PublicationEvaluation on the mechanical properties of Ground Granulated Blast Slag (GGBS) and fly ash stabilized soil via geopolymer process( 2021)
;Syafiadi Rizki Abdila ;Małgorzata Rychta ;Izabela Wnuk ;Marcin Nabiałek ;Krzysztof Muskalski ;Muhammad SyafwandiMarek IsradiThis study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers. -
PublicationImpedimetric transduction from a single-step thin film nanoporous aluminum oxide as a DNA sensing electrode( 2024-02-01)
;Shamsuddin S.A. ;Jasni I. ;Ibau C.A two-step anodization process has been widely used to grow a perfectly arranged Anodic Aluminum Oxide (AAO) nanoporous with high regularity and circularity. However, this method requires more time and electricity cost since the second step anodization will be conducted more than a couple of hours up to 24 h to obtain a perfect hexagonally arranged AAO. Besides, the usage of toxic chromic acid to remove the rough surface after the first anodization is not recommended. To solve this issue, a single-step of anodization method to grow AAO at 15 °C in 0.3 M of oxalic acid at 40 V for 1 h has been proposed. In this study, the growth AAO thin film will be tested as a DNA biosensor electrode. Prior to that, instead of using toxic chemicals, couple of drops of phosphoric acid solutions were used to treat the rough, uneven surfaces by promoting hydroxyl groups while at the same time widening and revealed the underneath pores. The AAO thin film is ready for the next step of surface modification without a second anodization step. Surface chemical functionalization using 3-aminopropyl-triethoxysilane (APTES) and glutaraldehyde is performed to immobilize the aminated-ssDNA probe on the surface. The electrochemical impedance technique is employed to monitor the changes in each layer of surface modifications. The charged transfer resistance (Rct) values are linearly increased with each new additional layer on the AAO surfaces during each step of surface modification and with the increase in ssDNA complementary target concentrations (10 fM-10 μM). From the performance test, the single-step AAO thin film electrode has shown great results in functioning as a DNA biosensor through a selectivity test. It has the capability to differentiate the complementary sequences from the single mismatched target with 3-fold. -
PublicationMechanical and durability analysis of fly ash based geopolymer with various compositions for rigid pavement applications( 2022)
;Mohd Rosli Mohd Hasan ;Andrei Victor Sandu ;Petrica Vizureanu ;Che Mohd Ruzaidi GhazaliAeslina Abdul KadirOrdinary Portland cement (OPC) is a conventional material used to construct rigid pavement that emits large amounts of carbon dioxide (CO2) during its manufacturing process, which is bad for the environment. It is also claimed that OPC is susceptible to acid attack, which increases the maintenance cost of rigid pavement. Therefore, a fly ash based geopolymer is proposed as a material for rigid pavement application as it releases lesser amounts of CO2 during the synthesis process and has higher acid resistance compared to OPC. This current study optimizes the formulation to produce fly ash based geopolymer with the highest compressive strength. In addition, the durability of fly ash based geopolymer concrete and OPC concrete in an acidic environment is also determined and compared. The results show that the optimum value of sodium hydroxide concentration, the ratio of sodium silicate to sodium hydroxide, and the ratio of solid-to-liquid for fly ash based geopolymer are 10 M, 2.0, and 2.5, respectively, with a maximum compressive strength of 47 MPa. The results also highlight that the durability of fly ash based geopolymer is higher than that of OPC concrete, indicating that fly ash based geopolymer is a better material for rigid pavement applications, with a percentage of compressive strength loss of 7.38% to 21.94% for OPC concrete. This current study contributes to the field of knowledge by providing a reference for future development of fly ash based geopolymer for rigid pavement applications. -
PublicationProperties of Blended Alkaline System Geopolymer-A Review( 2020-03-18)
;Ahmad Zaidi F.H.Saufi A.S.Geopolymers are inorganic material that comprise of silicon(Si) and aluminium(Al) bonded by oxygen atom to form a polymer network. The binder material used for geopolymer such as fly ash and blast furnace are mostly the industrial waste or by-products containing high content of silica and aluminium which acted as precursor for geopolymerization. The raw material plays an important role in the formation of geopolymer for each material may result in different properties of geopolymer. To improve the performance of these binders, numerous studies have been focused on the production of mixes based on blends of reactive precursors. The blends usually involve a Ca-rich precursor such as granulated blast furnace slag (GGBS), and an aluminosilicate source such as metakaolin or low calcium fly ash, to promote the stable coexistence of calcium silicate hydrate (C-S-H) gels formed from the activation of the GGBS and the geopolymer gel (N-A-S-H) produced from the activation of the aluminosilicate. Thus, this paper is intended to review the properties of different type of mixes of blended alkaline system. -
PublicationStructural and mechanical characterisation of cellulose nanofibers (CNF) from Pennisetum Purpureum reinforced with polylactic acid (PLA)( 2021-10-25)
;Revati R. ;Anas W.A.W.M.A.This study aims to develop a composite scaffold based on polylactic acid reinforced with cellulose nanofibers from Pennisetum purpureum (PLA/CNF). The composite scaffolds were prepared via solvent casting and particulate leaching technique; sodium chloride (NaCl) was used as the porogen material. The influence of CNF on PLA is investigated; scaffolds were fabricated with different content of CNF (5%, 10% and 15%). The prepared composite scaffold was characterised using porosity measurements, Fourier-transform infrared spectroscopy (FTIR) and the compression strength and modulus were also evaluated in this study. The PLA/CNF scaffolds were highly porous with porosity higher than 80%. It was also shown that the porosity had a slight decrease with increasing CNF contents due to the compact arrangement of CNF within the scaffolds. Compression strength and modulus also show an increase in value as the CNF content increases. The results also show that introducing CNF to the PLA matrix can be considered beneficial for cartilage regeneration, cell attachment, and extracellular matrix (ECM) production.2 -
PublicationMechanical Performance, Microstructure, and Porosity Evolution of Fly Ash Geopolymer after Ten Years of Curing Age( 2023-02-01)
;Aziz I.H.A. ;Chaiprapa J. ;Rojviriya C. ;Vizureanu P. ;Sandu A.V.This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes.1 -
PublicationSurface characterization study of nanoporous anodic aluminium oxide thin film synthesized by single-step anodization( 2021-05-03)
;Ismail J.Nanoporous anodic aluminium oxide (AAO) thin film electrodes were prepared by using a single step anodization method in 0.3 M oxalic acid at 40 V for 1 h. Electrolyte temperature was controlled and maintained at 15 °C by using ice water bath. After anodized, AAO surfaces were etched by using 5% phosphoric acid (H3PO4) solution at 30 °C to remove the AAO top rough surfaces and widening the pores. Effect of different etching duration to the pore widening was investigated at 10, 20 and 30 minutes, respectively. Regularity of the pores arrangements before and after etching were analysed by fast fourier transform (FFT) profile images that were generated from FESEM images. From observation, well ordered nanoporous structures were successfully revealed after top rough surfaces were removed by etching. Pores sizes were also found to be increased with the increasing of etching duration. Further investigations were done by x-ray diffraction (XRD) analysis and fourier transform infra-red spectroscopy (FTIR) to characterize and find out the crystallinity properties and functionalities of AAO thin film electrode surfaces. -
PublicationExperimental investigation of chopped steel wool fiber at various ratio reinforced cementitious composite panels( 2021)
;Akrm A. Rmdan Amer ;Ikmal Hakem A AzizHetham A.R. AmerThe flexural toughness of chopped steel wool fiber reinforced cementitious composite panels was investigated. Reinforced cementitious composite panels were produced by mixing of chopped steel wool fiber with a ratio range between 0.5% to 6.0% and 0.5% as a step increment of the total mixture weight, where the cement to sand ratio was 1:1.5 with water to cement ratio of 0.45. The generated reinforced cementitious panels were tested at 28 days in terms of load-carrying capacity, deflection capacities, post-yielding effects, and flexural toughness. The inclusion of chopped steel wool fiber until 4.5% resulted in gradually increasing load-carrying capacity and deflection capacities while, provides various ductility, which would simultaneously the varying of deflection capability in the post-yielding stage. Meanwhile, additional fiber beyond 4.5% resulted in decreased maximum load-carrying capacity and increase stiffness at the expense of ductility. Lastly, the inclusion of curves gradually.
- «
- 1 (current)
- 2
- 3
- »