Now showing 1 - 10 of 100
  • Publication
    Regression analysis of the dielectric and morphological properties for porous Nanohydroxyapatite/Starch composites: a correlative study
    This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.
  • Publication
    The effect of stacking sequence on fatigue behaviour of hybrid pineapple leaf fibre/carbon-fibre-reinforced epoxy composites
    ( 2021) ; ; ; ;
    Mohamed Thariq Hameed Sultan
    ;
    Ain Umaira Md Shah
    ;
    Kamarul Arifin Ahmad
    ;
    Adi Azriff Basri
    This study examined the fatigue behaviour of pineapple leaf fibre/carbon hybrid laminate composites under various stacking sequences. The vacuum infusion technique was used to fabricate the symmetric quasi-isotropic oriented laminates, in which the stacking was varied. The laminate was tested under static and fatigue tensile load according to ASTM D3039-76 and ASTM D3479-96, respectively. Maximum tensile strength and modulus of 119.34 MPa and 6.86 GPa, respectively, were recorded for the laminate with external PALF ply and internal carbon ply oriented at [± 45°2, 0°/90°2]s (PCCP_45090). The fatigue tests showed that PCCP_45090 and CPPC_09045 (with internal PALF ply and external carbon ply oriented at [0°/90°2, ± 45°2]s) exhibited a higher useful life, especially at the high-stress level of the ultimate tensile strength. The normalised stress against the number of cycles showed that the stacking sequences of different ply orientations affected the fatigue behaviour more than the stacking sequences of the material. The laminate stacking sequence significantly affected the hysteresis energy and stiffness evolution. The scanning electron microscopy images showed that the fatigue failure modes included fibre pull-out, fibre breakage, matrix cracking, debonding, and delamination. The study concluded that PCCP_45090 exhibited an outstanding fatigue performance.
  • Publication
    Physical, thermal, and mechanical properties of highly porous polylactic acid/cellulose nanofibre scaffolds prepared by salt leaching technique
    ( 2021)
    Revati Radakisnin
    ;
    ; ;
    Mohd Faizal Mat Tahir
    ;
    ;
    Hassan Al Alshahrani
    This study aimed to prepare and characterise polylactic acid (PLA) reinforced with cellulose nanofibre (CNF) from a Pennisetum purpureum-based composite scaffold and determine its structural and mechanical properties. Porous scaffolds with CNF compositions of 5‒20 wt% in the PLA matrix were developed using solvent casting and particulate leaching of its porogen at 90 wt% of loadings. Morphology studies using field emission scanning electron microscopy revealed that the scaffolds had well-interconnected pores with an average pore size range of 67‒137 µm and porosity >76%. X-ray diffraction confirmed the interconnectivity and homogeneity of the pores and the fibrous structure of the scaffolds. The compressive strength of the fabricated scaffolds varied between 2.34 and 6.66 MPa, while their compressive modulus was between 1.95 and 6.04 MPa for various CNF contents. Furthermore, water absorption and thermal degradation studies showed that the scaffold had good hydrophilicity and improved thermal stability. These findings highlight the need to modify the pore structure and mechanical performance simultaneously for tissue engineering. Thus, this study concludes that the developed PLA scaffolds reinforced with CNF from Pennisetum purpureum are potential candidates for cell attachment and extracellular matrix generation.
  • Publication
    Heat transfer improvement in simulated small battery compartment using metal oxide (CuO)/deionized water nanofluid
    Improving the heat transfer coefficient of working fluids is essential for achieving the best performance of manufacturing systems. As a replacement of conventional working fluids, nanofluids have a high potential for improving this heat transfer coefficient. However, nanofluids are seldom implemented in actual systems, and several factors should be considered before actual application. Accordingly, this study investigated the thermophysical properties and heat transfer rate of CuO/deionized water nanofluid with and without sodium dodecyl sulfate (SDS) surfactants. Three different volumetric concentrations of the nanofluid were prepared using a two-step preparation method. The experimental steps were divided into two phases: static and dynamic. In these experiments, the thermophysical properties of the prepared nanofluids and the heat transfer coefficient were measured using an apparatus designed based on an actual heat exchanger for a lithium ion polymer battery compartment. The effects of flow rate and surfactants on the heat transfer rate of the nanofluids with varying volumetric concentrations of 0.08%, 0.16%, and 0.40% were analyzed. The results indicate that the heat transfer rate increases considerably as the flow rate increases from 0.5 L/min to 1.2 L/min and with the presence of surfactants. The highest heat transfer rate was obtained at a 0.40% volumetric concentration of CuO/deionized water nanofluid with SDS surfactant.
  • Publication
    Structural, morphological and thermal properties of cellulose nanofibers from napier fiber (Pennisetum purpureum)
    ( 2020-09-01)
    Radakisnin R.
    ;
    ; ;
    Jawaid M.
    ;
    Sultan M.T.H.
    ;
    The purpose of the study is to investigate the utilisation of Napier fiber (Pennisetum purpureum) as a source for the fabrication of cellulose nanofibers (CNF). In this study, cellulose nanofibers (CNF) from Napier fiber were isolated via ball-milling assisted by acid hydrolysis. Acid hydrolysis with different molarities (1.0, 3.8 and 5.6 M) was performed efficiently facilitate cellulose fiber size reduction. The resulting CNFs were characterised through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), particle size analyser (PSA), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The FTIR results demonstrated that there were no obvious changes observed between the spectra of the CNFs with different molarities of acid hydrolysis. With 5.6 M acid hydrolysis, the XRD analysis displayed the highest degree of CNF crystallinity at 70.67%. In a thermal analysis by TGA and DTG, cellulose nanofiber with 5.6 M acid hydrolysis tended to produce cellulose nanofibers with higher thermal stability. As evidenced by the structural morphologies, a fibrous network nanostructure was obtained under TEM and AFM analysis, while a compact structure was observed under FESEM analysis. In conclusion, the isolated CNFs from Napier-derived cellulose are expected to yield potential to be used as a suitable source for nanocomposite production in various applications, including pharmaceutical, food packaging and biomedical fields.
  • Publication
    Failure envelope modelling of glass/epoxy composite pipes using system identification method
    The paper aims to model the performance of the Glass Fibre Reinforced Epoxy (GRE) composite pipe under multiaxial loading via system identification approach. System identification modelling depends on the input and output data of the experimental result. In this study, the experimental data used are obtained from a pressurised test rig. The model is based on pure hydrostatic (2H: 1A) loading using GRE pipes with three different winding angles (±45°, ±55°, ±63°). Several models based on different model structures are derived for comparison to obtain the best modelling accuracy. The result shows that the transfer function method could model and has the highest efficiency compared with the experimental result. The ±45°pipe model have achieved 92.41% and 85.13% for both its hoop and axial model. The ±55°pipe model has achieved 96.64% and 86.1%. Follow by the ±63°which the best fit is 92.41% and 94.26%. At the last part of this research, the ±55°pipe model and experimental data has been use to identified when the damage occur and found that the axial strain of 78 bar can damage the experimental pipe in this research.
  • Publication
    The effect of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (Palf)/carbon hybrid laminate composites
    In this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0â—¦, 90â—¦ ] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
  • Publication
    Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites
    The absorption behaviour of water and its effect on the tensile and flexural properties of interwoven cellulosic fibres were investigated. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion process that used epoxy as the polymer matrix. The water absorption characteristics of the fibres were obtained by immersing the composite samples in tap water at room temperature, until reaching their water content saturation point. The dry and water-immersed woven and interwoven hybrid composite samples were subjected to tensile and flexural tests. To study the effect of water penetration in the fibre/matrix interface, fractured samples were examined using field emission scanning electron microscopy (FESEM). The study shows that the mechanical and water-resistant properties of the kenaf, jute, and hemp fibres were improved through hybridization. However, as a result of water penetrating the fibre/matrix interface, longer water-immersion times reduced the tensile and flexural strength of the composites.
  • Publication
    Regression analysis of the dielectric and morphological properties for Porous Nanohydroxyapatite/Starch composites: a correlative study
    This paper aims to investigate the dielectric properties, i.e., dielectric constant (ε′), dielectric loss factor (ε″), dielectric tangent loss (tan δ), electrical conductivity (σ), and penetration depth (Dp), of the porous nanohydroxyapatite/starch composites in the function of starch proportion, pore size, and porosity over a broad band frequency range of 5 MHz–12 GHz. The porous nanohydroxyapatite/starch composites were fabricated using different starch proportions ranging from 30 to 90 wt%. The results reveal that the dielectric properties and the microstructural features of the porous nanohydroxyapatite/starch composites can be enhanced by the increment in the starch proportion. Nevertheless, the composite with 80 wt% of starch proportion exhibit low dielectric properties (ε′, ε″, tan δ, and σ) and a high penetration depth because of its highly interconnected porous microstructures. The dielectric properties of the porous nanohydroxyapatite/starch composites are highly dependent on starch proportion, average pore size, and porosity. The regression models are developed to express the dielectric properties of the porous nanohydroxyapatite/starch composites (R2 > 0.96) in the function of starch proportion, pore size, and porosity from 1 to 11 GHz. This dielectric study can facilitate the assessment of bone scaffold design in bone tissue engineering applications.
  • Publication
    Swelling behaviors of composite film with alternating fibre reinforcement and aqueous media
    ( 2021-10-25)
    Rohadi T.N.T.
    ;
    ; ; ;
    Norasni M.J.
    ;
    Marsi N.
    The swelling behaviour can affect the mechanical properties of the composite film and altering their ability to recover adsorbed substances. These problems are particularly important in the case of porous polymers. Therefore, several researchers have tried to improve the swelling properties by reducing the hydrophilic properties of gelatine and chitosan with adding reinforcing fillers. In this paper, the addition of the hydrophobic properties of pith and cortex of Napier grass in the chitosan/gelatin composite film will be investigated. The composite films were prepared via solution casting method will be evaluated based on the swelling behaviour in the alkali, neutral and acid solution. The result shows that type of reinforcement material and aqueous media used would affect the swelling behaviour of composite film. The results also suggest that the chitosan/gelatin composite films with incorporated cortex of Napier grass are the most water-resistant in neutral followed with acid and alkali.