Options
Mohd Arif Anuar Mohd Salleh
Preferred name
Mohd Arif Anuar Mohd Salleh
Official Name
Mohd Arif Anuar, Mohd Salleh
Alternative Name
Mohd Salleh, Mohd Arif Anuar
Salleh, Mohd A.A.
Salleh, M. A.A.Mohd
Mohd Salleh, M. A.A.
Salleh, M. A.A.M.
Mohd Salleh, M. M.A.
Main Affiliation
Scopus Author ID
55543476900
Researcher ID
C-3386-2018
Now showing
1 - 10 of 73
-
PublicationPerformance of Sn-3.0Ag-0.5Cu composite solder with kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica VizureanuMohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationStrength development and elemental distribution of Dolomite/Fly Ash geopolymer composite under elevated temperature( 2020)
;Emy Aizat Azimi ;Petrica Vizureanu ;Andrei Victor Sandu ;Jitrin Chaiprapa ;Sorachon YoriyaIkmal Hakem AzizA geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat. -
PublicationStrength development and elemental distribution of Dolomite/Fly Ash geopolymer composite under elevated temperature( 2020)
;Emy Aizat Azimi ;Petrica Vizureanu ;Jitrin Chaiprapa ;Sorachon Yoriya ;Andrei Victor SanduIkmal Hakem AzizA geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat. -
PublicationThe effect of thermal annealing on the microstructure and mechanical properties of Sn-0.7Cu-xZn Solder Joint( 2021)
;Mohd Izrul Izwan Ramli ;Marcin NabiałekThe microstructural properties of a Pb-free solder joint significantly affect its mechanical behaviours. This paper details a systematic study of the effect of the annealing process on the microstructure and shear strength of a Zn-added Sn-0.7Cu solder joint. The results indicated that the IMC layer’s thickness at the solder/Cu interface increases with annealing time. The interfacial IMC layer of the Sn-0.7Cu solder joint gradually thickened with increasing annealing time and annealing temperature, while the interfacial IMC layer’s morphology changed from scallop-type to layer-type after the annealing process. However, the addition of 1.0 wt.% and 1.5 wt.% Zn in the Sn-0.7Cu effectively altered the interfacial IMC phase to Cu-Zn and suppressed the growth of Cu3Sn during the annealing process. The single-lap shear tests results confirmed that the addition of Zn decreased the shear strength of Sn-0.7Cu. The interfacial IMC of the Cu6Sn5 phase in Sn-0.7Cu changed to Cu-Zn due to the addition of Zn. The shear fractures in the annealed solder joint were ductile within the bulk solder instead of the interfacial IMC layer. Increased annealing time resulted in the increased presence of the Cu-Zn phase, which decreased the hardness and shear strength of the Sn-0.7Cu solder joint. -
PublicationPerformance of Sn-3.0Ag-0.5Cu composite solder with Kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica VizureanuMohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationEffect of Ni on the suppression of sn whisker formation in Sn-0.7Cu solder joint( 2021)
;Andrei Victor Sandu ;Noor Zaimah Mohd MokhtarJitrin ChaiprapaThe evolution of internal compressive stress from the intermetallic compound (IMC) Cu6Sn5 growth is commonly acknowledged as the key inducement initiating the nucleation and growth of tin (Sn) whisker. This study investigates the effect of Sn-0.7Cu-0.05Ni on the nucleation and growth of Sn whisker under continuous mechanical stress induced. The Sn-0.7Cu-0.05Ni solder joint has a noticeable effect of suppression by diminishing the susceptibility of nucleation and growth of Sn whisker. By using a synchrotron micro X-ray fluorescence (µ-XRF) spectroscopy, it was found that a small amount of Ni alters the microstructure of Cu6Sn5 to form a (Cu,Ni)6Sn5 intermetallic layer. The morphology structure of the (Cu,Ni)6Sn5 interfacial intermetallic layer and Sn whisker growth were investigated by scanning electron microscope (SEM) in secondary and backscattered electron imaging mode, which showed that there is a strong correlation between the formation of Sn whisker and the composition of solder alloy. The thickness of the (Cu,Ni)6Sn5 IMC interfacial layer was relatively thinner and more refined, with a continuous fine scallop-shaped IMC interfacial layer, and consequently enhanced a greater incubation period for the nucleation and growth of the Sn whisker. These verification outcomes proposes a scientifically foundation to mitigate Sn whisker growth in lead-free solder joint. -
PublicationPerformance of Sn-3.0Ag-0.5Cu somposite solder with kaolin geopolymer ceramic reinforcement on microstructure and mechanical properties under isothermal ageing( 2021)
;Nur Syahirah Mohamad Zaimi ;Andrei Victor Sandu ;Petrica Vizureanu ;Mohd Izrul Izwan RamliThis paper elucidates the effect of isothermal ageing at temperature of 85 °C, 125 °C and 150 °C for 100, 500 and 1000 h on Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with the addition of 1 wt% kaolin geopolymer ceramic (KGC) reinforcement particles. SAC305-KGC composite solders were fabricated through powder metallurgy using a hybrid microwave sintering method and reflowed on copper substrate printed circuit board with an organic solderability preservative surface finish. The results revealed that, the addition of KGC was beneficial in improving the total thickness of interfacial intermetallic compound (IMC) layer. At higher isothermal ageing of 150 °C and 1000 h, the IMC layer in SAC305-KGC composite solder was towards a planar-type morphology. Moreover, the growth of total interfacial IMC layer and Cu3Sn layer during isothermal ageing was found to be controlled by bulk diffusion and grain-boundary process, respectively. The activation energy possessed by SAC305-KGC composite solder for total interfacial IMC layer and Cu3Sn IMC was 74 kJ/mol and 104 kJ/mol, respectively. Based on a lap shear test, the shear strength of SAC305-KGC composite solder exhibited higher shear strength than non-reinforced SAC305 solder. Meanwhile, the solder joints failure mode after shear testing was a combination of brittle and ductile modes at higher ageing temperature and time for SAC305-KGC composite solder. -
PublicationContribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review( 2022)
;Muhd Hafizuddin Yazid ;Marcin Nabiałek ;Marwan Kheimi ;Andrei Victor Sandu ;Adam RylskiBartłomiej JeżThere is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface. -
PublicationMetakaolin/sludge based geopolymer adsorbent on high removal efficiency of Cu2+( 2022)
;Pilomeena Arokiasamy ;Mohd Remy Rozainy Mohd Arif Zainol ;Marwan Kheimi ;Andrei Victor Sandu ;Petrica Vizureanu ;Rafiza Abdul RazakActivated carbon (AC) has received a lot of interest from researchers for the removal of heavy metals from wastewater due to its abundant porous structure. However, it was found unable to meet the required adsorption capacity due to its amorphous structure which restricts the fundamental studies and structural optimization for improved removal performance. In addition, AC is not applicable in large scale wastewater treatment due its expensive synthesis and difficulty in regeneration. Thus, the researchers are paying more attention in synthesis of low cost geopolymer based adsorbent for heavy metal removal due its excellent immobilization effect. However, limited studies have focused on the synthesis of geopolymer based adsorbent for heavy metal adsorption by utilizing industrial sludge. Thus, the aim of this research was to develop metakaolin (MK) based geopolymer adsorbent with incorporation of two types of industrial sludge (S1 and S3) that could be employed as an adsorbent for removing copper (Cu²⁺) from aqueous solution through the adsorption process. The effects of varied solid to liquid ratio (S/L) on the synthesis of metakaolin/sludge based geopolymer adsorbent and the removal efficiency of Cu²⁺ by the synthesis adsorbent were studied. The raw materials and synthesized geopolymer were characterized by using x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and micro XRF. The concentration of Cu²⁺ before and after adsorption was determined by atomic absorption spectroscopy (AAS) and the removal efficiency was calculated. The experimental data indicated that the synthesized geopolymer at low S/L ratio has achieved the highest removal efficiency of Cu²⁺ about 99.62% and 99.37% at 25%:75% of MK/S1 and 25%:75% of MK/S3 respectively compared to pure MK based geopolymer with 98.56%. The best S/L ratio for MK/S1 and MK/S3 is 0.6 at which the reaction between the alkaline activator and the aluminosilicate materials has improved and enhanced the geopolymerization process. Finally, this work clearly indicated that industrial sludge can be utilized in developing low-cost adsorbent with high removal efficiency -
PublicationDiverse material based geopolymer towards heavy metals removal : a review( 2023)
;Pilomeena Arokiasamy ;Monower Sadique ;Mohd Remy Rozainy Mohd Arif ZainolChe Mohd Ruzaidi GhazaliMetakaolin is a commonly used aluminosilicate material for the synthesis of geopolymer based adsorbent. However, it presents characteristics that restrict its uses such as weak rheological properties brought on by the plate-like structure, processing challenges, high water demand and quick hydration reaction. Industrial waste, on the other hand, contains a variety of components and is a potential source of aluminosilicate material. Geopolymer adsorbent synthesized by utilizing industrial waste contains a wide range of elements that offer better ion-exchangeability and increase active sites on the surface of geopolymer. However, limited studies focused on the synthesized of geopolymer based adsorbent by utilizing industrial waste for heavy metal adsorption in wastewater treatment. Therefore, this paper reviews on the raw materials used in the synthesis of geopolymer for wastewater treatment. This would help in the development of low cost geopolymer based adsorbent that has a great potential for heavy metal adsorption, which could deliver double benefit in both waste management and wastewater treatment.