Options
Romisuhani Ahmad
Preferred name
Romisuhani Ahmad
Official Name
Romisuhani, Ahmad
Alternative Name
Ahmad, Romisuhani
Romisuhani, Ahmad
Romisuhani, A.
Ahmad, R.
Main Affiliation
Scopus Author ID
56354732400
Researcher ID
AAA-1058-2021
Now showing
1 - 10 of 28
-
PublicationPotential of soil stabilization using Ground Granulated Blast Furnace Slag (GGBFS) and fly ash via geopolymerization method: a review( 2022)
;Syafiadi Rizki Abdila ;Dumitru Doru Burduhos Nergis ;Andrei Victor SanduPetrica VizureanuGeopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers. -
PublicationEvaluation on the mechanical properties of Ground Granulated Blast Slag (GGBS) and fly ash stabilized soil via geopolymer process( 2021)
;Syafiadi Rizki Abdila ;Małgorzata Rychta ;Izabela Wnuk ;Marcin Nabiałek ;Krzysztof Muskalski ;Muhammad SyafwandiMarek IsradiThis study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers. -
PublicationCrumb rubber geopolymer mortar at elevated temperature exposure( 2022)
;Che Mohd Ruzaidi Ghazali ;Ramadhansyah Putra Jaya ;Mohammad A. Almadani ;Wysłocki, Jerzy J. ;Agata ŚliwaAndre Victor SanduLow calcium fly ash is used as the main material in the mixture and the crumb rubber was used in replacing fine aggregates in geopolymer mortar. Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) which were high alkaline solution were incorporated as the alkaline solution. The fly ash reacted with the alkaline solution forming alumino-silicate gel that binds the aggregate to produce a geopolymer mortar. The loading of crumb rubber in the fly ash based geopolymer mortar was set at 0% -
PublicationCharacterization and properties of palm kernel shell filled low density polyethylene biocomposites( 2011)Biocomposites based on palm kernel shell (PKS) and low density polyethylene (LDPE) was investigated. The biocomposites were prepared by using Z-Blade mixer at processing temperature 180 oC and rotor speed 50 rpm. The effect of filler loading of PKS as filler in LDPE on mechanical properties, water absorption, morphology, thermal properties and fourier tranformation infrared spectroscopy (FTIR) were studied. The results show that the increasing of filler loading have decreased the tensile strength and elongation at break but increased the Young’s modulus and water absorption. The morphology study using scanning electron microscopy (SEM) shows poor interfacial interaction between PKS and LDPE with increasing of the filler loading. The crystallinity of the biocomposites increased with increasing of PKS loading. To improve the mechanical properties, compatibilizer, Polyethylene co-acrylic acid (PEAA) was used. The effect of chemical modification of biocomposites with polyethylene co-acrylic acid (PEAA), acrylic acid (AA) and coconut coupling agent (COCA) enhanced the tensile strength, Young’s modulus and crystallinity of the biocomposites but reduced the elongation at break and water absorption. The morphology study (SEM) shows that the filler-matrix interaction was improved with incorporation of PEAA, AA and COCA. The FTIR results show that the wave number of hydroxyl group for all biocomposites shifted to lower wave number which indicates that interaction between the hydroxyl groups from PKS with compatibilizer and coupling agent.
-
PublicationEffect of the sintering mechanism on the crystallization kinetics of Geopolymer-Based ceramics( 2023)
;Nur Bahijah Mustapa ;Andrei Victor Sandu ;Ovidiu Nemes ;Petrica Vizureanu ;Christina W. KartikowatiPuput RisdanareniThis research aims to study the effects of the sintering mechanism on the crystallization kinetics when the geopolymer is sintered at different temperatures: 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C, and 1200 °C for a 3 h soaking time with a heating rate of 5 °C/min. The geopolymer is made up of kaolin and sodium silicate as the precursor and an alkali activator, respectively. Characterization of the nepheline produced was carried out using XRF to observe the chemical composition of the geopolymer ceramics. The microstructures and the phase characterization were determined by using SEM and XRD, respectively. The SEM micrograph showed the microstructural development of the geopolymer ceramics as well as identifying reacted/unreacted regions, porosity, and cracks. The maximum flexural strength of 78.92 MPa was achieved by geopolymer sintered at 1200 °C while the minimum was at 200 °C; 7.18 MPa. The result indicates that the flexural strength increased alongside the increment in the sintering temperature of the geopolymer ceramics. This result is supported by the data from the SEM micrograph, where at the temperature of 1000 °C, the matrix structure of geopolymer-based ceramics starts to become dense with the appearance of pores. -
PublicationSynthesis of metakaolin based alkali activated materials as an adsorbent at different Na2SiO3/NaOH ratios and exposing temperatures for Cu2+ Removal( 2023)
;Masdiyana Ibrahim ;Marcin Nabialek ;Ramadhansyah Putra Jaya ;Monthian SetkitBartłomiej JeżWater contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates is the most promising technique, and has a high adsorption capability owing to a large surface area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali activated materials on a surface structure with excellent functional properties can be used as adsorbent materials for the removal of copper ions. A variety of mix designs were created with varying sodium silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%, respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated materials are adsorbent and may be produced easily by solidifying the sample at 60 °C without using much energy. The specific surface area, water absorption, microstructure, phase analysis, functional group analysis, and adsorption capability of copper ions by metakaolin based alkali activated materials as adsorbents were evaluated. The water absorption test on the samples revealed that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of 36.24%, superior pore size distribution, and homogeneous porosity at 60 °C, with a surface area of 24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper solution, the temperature of 25 °C, and contact time of 60 min. It is concluded that self-supported metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively remove copper ions in aqueous solutions, making them an excellent alternative for wastewater treatment applications. -
PublicationAssessment of geopolymer concrete for underwater concreting properties( 2021)
;Fakhryna Hannanee Ahmad Zaidi ;Ikmal Hakem Aziz ;Subaer JunaidiSalmabanu LuharFor ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer. -
PublicationPhase analysis of different liquid ratio on Metakaolin/Dolomite geopolymer( 2021)
;Ahmad Syauqi Sauffi ;Masdiyana IbrahimFakhryna Ahmad ZaidiGeopolymer is widely studied nowadays in various scope of studies. Some of the ongoing studies are the study of the various materials towards the geopolymer strength produced. Meanwhile, some of the studies focus on the mixing of the geopolymer itself. This paper discussed the phase analysis of metakaolin/dolomite geopolymer for different solid to the liquid ratio which was, 0.4, 0.6, 0.8, and 1.0, and the properties that affected the geopolymer based on the phases. The constant parameters in this study were the percentage of metakaolin and dolomite used. The metakaolin used was 80% meanwhile dolomite usage was 20%. Besides that, the molarity of NaOH used is 10M and the alkaline activator ratio used is 2.0. All the samples were tested at 28 days of curing. The results show that the 0.8 solid to the liquid ratio used gave better properties compare to other solid to liquid ratio. The phases analyzed were quartz, sillimanite, mullite, and faujasite. The 0.8 S/L ratio shows the better properties compared to others by the test of phase analysis, compressive strength morphology analysis, and functional group analysis. -
PublicationCorrelation Study on the Effect of Sintering Mechanism with the Properties of Geopolymer-Based Ceramic( 2023-01-01)
;Nur Bahijah M.Nepheline geopolymer-based ceramics are emerging as a promising alternative to traditional ceramics due to their eco-friendly production and sustainable nature. Therefore, this study aims to comprehensively investigate the relationship between mechanical behaviour and sintering mechanisms in the production of kaolin geopolymer-based nepheline ceramics. Sodium hydroxide and sodium silicate were mixed to act as the alkaline activator to facilitate the geopolymerization process. The experimental analysis involved varying the sintering temperature within the range of 200°C to 1200°C. The findings from the correlation study highlight that the flexural strength and densification process is in linear relation with R2 of 0.9369, whilst the water absorption and volumetric shrinkage exhibited an inversely linear relationship with the R2 value of 0.8733. The maximum flexural strength of 78.92 MPa and density of 2.56 g/cm3 were achieved when sintered at 1200°C. Meanwhile, the water absorption decreases with the increase of volumetric shrinkage, which might relate to the densification process of the geopolymer-based nepheline ceramic. The outcome of this research contributes a deeper understanding of the interplay between mechanical behaviour and sintering mechanism, enabling the design of superior sintered materials. -
PublicationAssessment of Geopolymer Concrete for Underwater Concreting Properties( 2022-01-01)
;Zaidi F.H.A. ;Aziz I.H. ;Junaidi S.Luhar S.For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers' properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers' mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.