Now showing 1 - 3 of 3
  • Publication
    Fly Ash porous material using geopolymerization process for high temperature exposure
    ( 2012-04-10) ; ; ;
    Mohamed Bnhussain
    ;
    Che Mohd Ruzaidi Ghazali
    ;
    Mohd Izzat Ahmad
    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.
  • Publication
    Bahan geopolimer : Pemprosesan, Pencirian dan Aplikasi
    Buku Bahan Geopolimer: Pemprosesan, Pencirian dan Aplikasi adalah sebuah buku yang membincangkan beberapa aspek penting mengenai bahan geopolimer seperti pemprosesan, perincian, aplikasi dan sifat bahan geopolimer dalam teknologi konkrit. Buku ini juga menerangkan secara terperinci tentang bahan geopolimer dari aspek teori, pemprosesan, pencirian dan aplikasi yang sesuai dijadikan sebagai bahan rujukan dan panduan kepada pelajar, penyelidik dan pengamal industri.
  • Publication
    Mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age
    ( 2023)
    Ikmal Hakem A. Aziz
    ;
    ; ; ; ;
    Jitrin Chaiprapa
    ;
    Catleya Rojviriya
    ;
    Petrica Vizureanu
    ;
    Andrei Victor Sandu
    ;
    ; ;
    This paper elucidates the mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after 10 years of curing age. Given their wide range of applications, understanding the microstructure of geopolymers is critical for their long-term use. The outcome of fly ash geopolymer on mechanical performance and microstructural characteristics was compared between 28 days of curing (FA28D) and after 10 years of curing age (FA10Y) at similar mixing designs. The results of this work reveal that the FA10Y has a beneficial effect on strength development and denser microstructure compared to FA28D. The total porosity of FA10Y was also lower than FA28D due to the anorthite formation resulting in the compacted matrix. After 10 years of curing age, the 3D pore distribution showed a considerable decrease in the range of 5–30 µm with the formation of isolated and intergranular holes.