Now showing 1 - 3 of 3
  • Publication
    Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Marcin Nabiałek
    ;
    ; ;
    Marwan Kheimi
    ;
    Andrei Victor Sandu
    ;
    Adam Rylski
    ;
    Bartłomiej Jeż
    There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.
  • Publication
    Mechanical properties of Fly Ash-Based geopolymer concrete incorporation Nylon66 Fiber
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Muhammad Shazril I. Ibrahim
    ;
    Rafiza Abdul Razak
    ;
    Dumitru Doru Burduhos Nergis
    ;
    Diana Petronela Burduhos Nergis
    ;
    Omrane Benjeddou
    ;
    Khanh-Son Nguyen
    This study was carried out to investigate the effect of the diamond-shaped Interlocking Chain Plastic Bead (ICPB) on fiber-reinforced fly ash-based geopolymer concrete. In this study, geopolymer concrete was produced using fly ash, NaOH, silicate, aggregate, and nylon66 fibers. Characterization of fly ash-based geopolymers (FGP) and fly ash-based geopolymer concrete (FRGPC) included chemical composition via XRF, functional group analysis via FTIR, compressive strength determination, flexural strength, density, slump test, and water absorption. The percentage of fiber volume added to FRGPC and FGP varied from 0% to 0.5%, and 1.5% to 2.0%. From the results obtained, it was found that ICBP fiber led to a negative result for FGP at 28 days but showed a better performance in FRGPC reinforced fiber at 28 and 90 days compared to plain geopolymer concrete. Meanwhile, NFRPGC showed that the optimum result was obtained with 0.5% of fiber addition due to the compressive strength performance at 28 days and 90 days, which were 67.7 MPa and 970.13 MPa, respectively. Similar results were observed for flexural strength, where 0.5% fiber addition resulted in the highest strength at 28 and 90 days (4.43 MPa and 4.99 MPa, respectively), and the strength performance began to decline after 0.5% fiber addition. According to the results of the slump test, an increase in fiber addition decreases the workability of geopolymer concrete. Density and water absorption, however, increase proportionally with the amount of fiber added. Therefore, diamond-shaped ICPB fiber in geopolymer concrete exhibits superior compressive and flexural strength.
  • Publication
    Contribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: A review
    ( 2022)
    Muhd Hafizuddin Yazid
    ;
    ; ;
    Marcin Nabiałek
    ;
    ; ;
    Marwan Kheimi
    ;
    Andrei Victor Sandu
    ;
    Adam Rylski
    ;
    Bartłomiej Jeż
    There is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface.