Now showing 1 - 10 of 43
  • Publication
    Synthesis methods of tin oxide as photoanode for dye-sensitized solar cell performance- a short review
    ( 2021-12)
    Siti Norhafizah Idris
    ;
    ; ; ;
    Kaiswariah Magiswaran
    ;
    Sharizal Ahmad Sobri
    This review focused on the synthesis methods of tin oxide (SnO₂) nanoparticles as a photoanode for dye-sensitized solar cell (DSSC) and how it impacts the performance. There are many different techniques and various nanoparticles were produced and usually characterized by X-ray diffraction (XRD) to determine crystalline structure of SnO₂, scanning electron microscopy (SEM) to examine the surface morphology and size details and J-V solar simulator to verify current-voltage characteristics. In summary, considering all the methods reviewed, sol-gel is reported as the best method to produce SnO₂ nanoparticles for DSSC fabrication with the highest efficiency recorded of 3.96%.
  • Publication
    Synthesis Methods of Tin Oxide as Photoanode for Dye-Sensitized Solar Cell Performance: A Short Review
    ( 2021-12-01)
    Idris S.N.
    ;
    ; ; ;
    Magiswaran K.
    ;
    Sobri S.A.
    This review focused on the synthesis methods of tin oxide (SnO2) nanoparticles as a photoanode for dye-sensitized solar cell (DSSC) and how it impacts the performance. There are many different techniques and various nanoparticles were produced and usually characterized by X-ray diffraction (XRD) to determine crystalline structure of SnO2, scanning electron microscopy (SEM) to examine the surface morphology and size details and J-V solar simulator to verify current-voltage characteristics. In summary, considering all the methods reviewed, sol-gel is reported as the best method to produce SnO2 nanoparticles for DSSC fabrication with the highest efficiency recorded of 3.96%.
  • Publication
    Thermal Insulation and Mechanical Properties in the Presence of Glas Bubble in Fly Ash Geopolymer Paste
    The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/ cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
  • Publication
    Mesoporous Structure of Doped and Undoped PEG on Ag/TiO2 Thin Film
    In this reaserch, photocatalyst silver titanium dioxide was doped and modified by Polyethylene Glycol (PEG). The purpose of the present study was to analyse the synthesized Ag/TiO2 thin film doped and undoped PEG. Ag/TiO2 thin films on silicon wafer have been prepared by sol-gel spin coating. The samples were characterized by Grazing Incidence X-ray diffraction (GIXRD), Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscope (AFM). The doped and undoped PEG Ag/TiO2 thin films showed a mesoporous TiO2 matrix which includes TiO2 crystallites of 10-20 nm in size and small Ag nanoparticles (white spots) with various sizes ranging from 10 to 30 nm. However, doped PEG Ag/TiO2 thin film showed the Ag nanoparticles became agglomerates but still remained roughly uniform on the surface.
  • Publication
    Ground coffee waste-derived activated carbon a sustainable adsorbent and photocatalyst for effective methylene blue dye degradation
    ( 2024-12)
    Or Yang Jai Xien
    ;
    Siti Norsaffirah Zailan
    ;
    ; ;
    This study focuses on harnessing the potential of ground coffee waste (GCW) as a valuable precursor to produce activated carbon (AC) through pyrolysis. The objective is to develop an eco-friendly adsorbent and photocatalyst for environmental remediation applications. Preceding pyrolysis at 350°C for 3.5 hours, GCW was subjected to activate using hydrochloric acid (HCl) and potassium hydroxide (KOH). The resulting AC was subsequently combined with titanium dioxide (TiO2) photocatalyst powder, resulting in the creation of TiO2-AC composites that functioned both as adsorbent and photocatalyst. The TiO2-AC composites were investigated for their adsorption and photocatalytic capabilities in the degradation of 10 ppm methylene blue dye under sunlight exposure for 240 minutes. Morphological analysis revealed a sponge-like structure for both HCl-activated AC and NaOH-activated AC, with HCl-AC exhibiting more pronounced and uniform pores compared to KOH-AC. Remarkably, GCW demonstrated the highest removal efficiency, effectively removing 97.34% of methylene blue, outperforming HCl-AC (16.89%) and KOH-AC (10.41%). Nonetheless, the AC-TiO2 composites, specifically HCl-AC/TiO2 and KOH-AC/TiO2, also exhibited considerable removal efficiencies of 93.31% and 92.46%, respectively. These findings underscore the promising potential of utilizing GCW-derived activated carbon as an environmentally sustainable solution for organic pollutant treatment and herald its significance in promoting greener approaches to waste utilization and environmental protection.
  • Publication
  • Publication
    Effect of graphene oxide on microstructure and optical properties of TiO2 thin film
    ( 2019-01-01)
    Azani A.
    ;
    ;
    Razak K.A.
    ;
    ;
    Mohd Salleh M.A.A.
    ;
    Abdul Razak M.F.S.
    ;
    ;
    Ramli M.M.
    ;
    ;
    Chobpattana V.
    GO/TiO2 thin films have been synthesized from titanium (IV) isopropoxide (TTIP) by a sol-gel method. The films were deposited onto a glass substrate using spin coating deposition technique then were subjected to annealed process at 350 °C. The different amount of graphene oxide (GO) was added into the parent solution of sol in order to investigate the microstructure, topography, optical band gap and photocatalytic activity of the thin films. The prepared thin films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), UV-VIS spectrophotometry and degradation of methylene blue (MB). AFM images reveal a rougher surface of GO/TiO2 thin film than bare TiO2 thin film due to GO particles. Moreover, the SEM images showed the formation of semispherical microstructure of bare TiO2 changes to some larger combined molecules with GO addition. The UV-Vis spectrophotometer results show that with optical direct energy gap decreases from 3.30 to 3.18 eV after GO addition due to the effect of high surface roughness and bigger grain size. Furthermore, the optical results also indicated that GO improved the optical properties of TiO2 in the visible range region.
  • Publication
    Magnetite (Fe₃O₄)-activated carbon composite from ground coffee waste for the removal of copper ions (Cu²⁺) from solution
    ( 2024-12)
    Siti Norsaffirah Zailan
    ;
    ;
    Nur Mawaddah Juzaini
    ;
    ; ;
    Aissa Bouaissi
    The influence of the magnetite addition on the adsorption efficiency of activated carbon (AC) synthesized using different activators was investigated. In this work, the activated carbon from ground coffee waste (GCW) was prepared via activation with phosphoric acid (H3PO4) and potassium hydroxide (KOH), followed by carbonization at 500˚C. The magnetite (Fe₃O₄)-activated carbon composites were prepared by mixing the activated carbon with Fe₃O₄ powders. From the X-ray diffraction analysis, both activated carbons produced by H₃PO₄, and KOH are in the form of amorphous structures. Magnetite peaks can be observed from the magnetite-activated carbon composites. KOH-treated activated carbon shows the formation of porous honeycomb-like structures with large pore size (average diameter ±43 𝛍m) compared to H3PO4-treated activated carbon where the smaller, non-uniform pore morphology with the average diameter ±32 𝛍m was formed. The copper ions removal efficiency is the highest for biochar (almost 100%). For treated activated carbon, AC-KOH and MAC-KOH shows the highest adsorption removal efficiency (99.7%) compared to the acid-treated carbon (91.9%). Magnetite itself has good adsorption behaviour (93.6% efficiency) due to its nanocrystalline structure (high surface area) and functional groups.
  • Publication
    The effect of Spinacia )leracea dye absorption time on ZnO-based dye-sensitized solar cells’ electrical performance
    ( 2022-12)
    Kaiswariah Magiswaran
    ;
    ; ; ;
    Siti Norhafizah Idris
    ;
    Zuraida Abal Abas
    Dye-sensitized solar cells (DSSC) have attracted much attention over the past 20 years due to their significance in energy conversion. However, the dye soaking time may significantly impact the efficacy of the photoanode semiconductor to carry the electronic charge to which the dye molecules adhere. An optimized dye soaking time may prevent the recombination of photo-excited electrons that are injected into the semiconductor of the DSSC. This study scrutinized the dependence of the zinc oxide (ZnO) photoanode soaking time of Spinacia oleracea (spinach) dye on the photocurrent-voltage characteristics. The ZnO film layer (photoanode) was prepared with commercial ZnO nanopowder and applied onto a fluorinedoped tin oxide (FTO) glass substrate using the doctor blade method. The prepared DSSCs’ were subjected to a variety of characterizations, including current density-voltage (J-V) characterization, UV-visible characterization, scanning electron microscope (SEM), and Xray diffraction (XRD). Comparing four variations of dye soaking time, ZnO-based DSSC photoanode soaked in the dye for an hour achieved an optimum efficiency of 0.03 %. This study proved that the efficiency of a DSSC can be improved by optimizing the dye soaking time.
  • Publication
    Review on performance of lithium titanate and its impurities dopant as a lithium-ion battery anode
    Li-ion batteries are the main source of energy for electronic devices such as cameras, calculators, mobile phones, laptops, and electric vehicles. Among the materials being considered, lithium titanate (𝐿𝑖4𝑇𝑖5𝑂12) has become a promising anode material due to its high stability and safety, as well as enabling high operability without sacrificing lifetime. However, in order to further improve performance and customise properties for specific applications, impurity dopants have been investigated as a means of modifying 𝐿𝑖4𝑇𝑖5𝑂12 performance. This paper examines 𝐿𝑖4𝑇𝑖5𝑂12 and its impurities as anode materials. Starting with a basic understanding of the crystal structure and characteristics of 𝐿𝑖4𝑇𝑖5𝑂12, its properties and applications. Besides, this study explores the effects of different dopants on the 𝐿𝑖4𝑇𝑖5𝑂12 on battery parameters. Based on various research studies and recent developments, the review summarises the current knowledge about 𝐿𝑖4𝑇𝑖5𝑂12 and impurity dopants. Each dopant's different effects on the lattice structure highlight its importance for further development. As a result, it may lead to future research of 𝐿𝑖4𝑇𝑖5𝑂12 anodes for large-scale energy storage technology.