Options
Fauziah Che Mat
Preferred name
Fauziah Che Mat
Official Name
Fauziah, Mat
Alternative Name
Mat, Fauziah
Mat, Fauziah
Main Affiliation
Scopus Author ID
38362054200
Researcher ID
ITQ-2640-2023
Now showing
1 - 9 of 9
-
PublicationAssessment of functional and dysfunctional on implant stability measurement for quality of life( 2017)
;Razli Che RazakThis study was conducted to investigate the effect of an implant wearer comprising among orthopedic patients as well as the use of implant dentistry in Northern Malaysia. A total of 100 questionnaires were distributed and 70 questionnaires can be used to record, analyze, and test hypotheses. Data for all variables were collected through a questionnaire administered alone and analyzed by using SmartPLS V3. A total of four (4) hypotheses have been formulated and the results show that the hypothesis is supported. The results show that: (1) limit the functionality and quality of life was significantly (0.904) in connection with the implant wearer, (2) physical pain was significantly (0.845) relating to the quality of life, (3) physical discomfort was significantly (0.792) in connection with quality of life, and also (4) social discomfort is significant as well (0.809). This finding suggests that there are positive effects on the implant wearer who through life routine. The results of the study may also serve as a basis for reliable decisions related to quality of life and for the implementation of awareness campaigns that increase how the need for humanity in the field of quality involvement. -
PublicationAssessment of functional and dysfunctional on implant stability measurement for quality of life( 2017)
;Razli Che RazakThis study was conducted to investigate the effect of an implant wearer comprising among orthopedic patients as well as the use of implant dentistry in Northern Malaysia. A total of 100 questionnaires were distributed and 70 questionnaires can be used to record, analyze and test hypotheses. Data for all variables were collected through a questionnaire administered alone and analyzed by using SmartPLS V3. A total of four (4) hypotheses have been formulated and the results show that the hypothesis is supported. The results show that: (1) limit the functionality and quality of life was significantly (0.904) in connection with the implant wearer, (2) physical pain was significantly (0.845) relating to the quality of life, (3) physical discomfort was significantly (0.792) in connection with quality of life, and also (4) social discomfort is significant as well (0.809). This finding suggests that there are positive effects on the implant wearer who through life routine. The results of the study may also serve as a basis for reliable decisions related to quality of life and for the implementation of awareness campaign that increase how the need for humanity in the field of quality involvement. -
PublicationPre- and Post-operative Assessment of Bone with Osteogenesis Imperfecta using Finite Element Analysis: A Review( 2024-02-01)
;Wanna Soh Bua ChaiApplications of finite element analysis (FEA) to demonstrate the pre-and post-operative conditions of the brittle bone-related disease known as osteogenesis imperfecta (OI) has been widely used in the past and at present. The method used to reconstruct the bone model that resemble the OI bone geometry plays an important aspect to accurately represent the bone condition to provide more alternative ways to evaluate surgical intervention options. Other factors such as material properties and boundary conditions also reflect the results of the analysis. Therefore, the aim of this review paper is to analyse the approaches of previous studies in terms of model geometry construction, selection of materials properties and boundary conditions to enable a deeper understanding and evaluation of bone fractures in OI patients. The biomechanical design of the intramedullary (IM) rods used in post-operative surgery and the interface between IM rods and bone fragments are also discussed in this review paper. -
PublicationFinite element analysis of proximal femur in sideways fall under quasi-static loading( 2023-07-01)
;Subramaniam D. ;Majid M.S.A.Many researchers have investigated femur fractures using 3D models created with finite element (FE) software; however, these models need validation. Cadavers are used in experiments to validate the FE model. Nevertheless, there are several restrictions and obstacles to experimenting on the cadaver femur bone. The aim of this study was to investigate the effect of loading direction on the stress distribution and fracture risk of a proximal femur bone under quasi-static loading in a sideways fall condition. A validated 3D FE model of the proximal femur was developed by employing the results obtained from a quasi-static experimental test. Instead of cadaver, 3D-printed proximal femur bone was used. Various fall loading configurations were used to simulate a sideways fall with inclination angles from 0° to 20° and rotational angles from −15° to 15°. The highest von Mises stress is due to sideways falls distributed in the femur neck region. This study provides new information on FE model construction and medical FE analysis. -
PublicationFinite Element Prediction on Fracture Load of Femur with Osteogenesis Imperfecta under Various Loading Conditions( 2022-01-01)
;Wanna Soh Bua ChaiSulaiman A.R.Osteogenesis Imperfecta (OI) is an inherited disorder characterized by extreme bone fragility due to collagen defects. It is an incurable disease. Bone fractures can occur frequently without prior notice, especially among children. Early quantitative prediction of fracture loads due to OI tends to alert patients to avoid unnecessary situations or dangerous conditions. This study is aimed at investigating the fracture loads of femur with OI under various types of loading. Ten finite element models of an OI-affected bone were reconstructed from the normal femur with different bowing angles ranging from 7.5 to 30.0°. The boundary conditions were assigned on an OI-affected femoral head under three types of load: medial-lateral impacts, compression-tension, and internal-external torsions, and various loading direction cases that reflect the stance condition. The fracture load was examined based on the load that can cause bone fracture for each case. The results show that the loads bearable by the femur before fracture were decreased with respect to the increase of OI bowing angles in most of the loading cases. The risk of fracture for the femur with OI was directly proportional to the increase of bowing angles in the frontal plane. This study provides new insights on fracture load prediction in OI-affected bone with respect to various loading types, which could help medical personnel for surgical intervention judgement. -
PublicationSynthesis and Characterization of Composite Film Based on Cellulose of Napier Grass Incorporated with Chitosan and Gelatine for Packaging Material( 2023-05-01)
;Rohadi T.N.T. ;Azizan A.Sapuan S.M.Mitigating environmental pollution, which adversely affects humans, wildlife, and habitat, has been attracting increasing attention worldwide, especially with reference to the importance of using composite films. In this study, composite films consisting of cellulose, chitosan, and gelatine were analysed and characterized. It was fabricated via a solution casting method. The cellulose extracted from the whole stem, cortex, and pith of Napier grass with 4, 8, 12, and 16% alkali concentrations were used to produce the composite films. Based on the thermogravimetric analysis, mechanical analysis, Fourier-transform infrared spectroscopy (FTIR) analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM) observation, it was confirmed that the interaction of cellulose of Napier grass, chitosan and gelatine had improve the thermal behaviour, strength, composition, crystallinity, and morphology of composite films. The composite films using 8% alkali-treated cellulose from the whole stem had an ordered structure with 2θ = 22.68°. Furthermore, it contained the highest final residue (74.85%) and tensile strength of 4.58 ± 0.373 MPa. -
PublicationEnergy absorption and failure behavior of Al/CFRP/GFRP hybrid tubes under quasi-static axial loading( 2023-07-01)Fiber metal laminate (FML) is gaining increased interest among researchers in designing thin-walled tubes as an efficient energy absorber. The combination of aluminum tube and fiber-reinforced polymer (FRP) as an FML hybrid tube has successfully demonstrated enhanced crashworthiness performance of structures. Previous studies reported FML hybrid tubes employing a single type of FRP composite material as the laminate material. Investigations on the effect of stacking sequences of multiple types of FRP composite as laminate materials are limited and mostly focused on sandwich structures. This study aims to investigate the effect of reinforcement material as a laminate layer and stacking sequences on the crashworthiness characteristics of aluminum-FRP hybrid tubes under quasi-static axial compression loading. The crashworthiness characteristics and the failure behavior of aluminum monolithic tube, aluminum-single FRP material, and aluminum-multi FRP material hybrid tubes are tested and compared. Glass FRP (GFRP) demonstrates great potential as a laminate material for aluminum tube compared with carbon FRP (CFRP). Aluminum-GFRP and aluminum-GFRP-CFRP hybrid tubes exhibit a 26.4 % and 66.9 % increase in energy absorbed, respectively, compared with the monolithic aluminum tube. The specific energy absorption and crushing force efficiency of the aluminum-GFRP-CFRP hybrid tube show minimal reductions of 4.9 % and 6.2 %, respectively. GFRP is the better choice of laminate material for aluminum tubes compared with CFRP. Multiple FRP laminates show a larger crashworthiness enhancement of FRP hybrid tubes in achieving better crashworthiness performance of the energy absorber. These findings imply that the selection and stacking sequences of laminate material are vital in tailoring the performance of the hybrid tubes toward efficient energy absorbers.
-
PublicationTemperature measurement methods in an experimental setup during bone drilling: A brief review on the comparison of thermocouple and infrared thermography( 2021-12-14)
;Islam M.A.Predicting thermal response in orthopedic surgery or dental implantation remains a significant challenge. This study aims to find an effective approach for measuring temperature elevation during a bone drilling experiment by analyzing the existing methods. Traditionally thermocouple has frequently been used to predict the bone temperature in the drilling process. However, several experimental studies demonstrate that the invasive method using thermocouple is impractical in medical conditions and preferred the thermal infrared (IR) camera as a non-invasive method. This work proposes a simplified experimental model that uses the thermocouple to determine temperature rise coupled with the thermal image source approach. Furthermore, our new method provides a significant opportunity to calibrate the thermal IR camera by finding out the undetected heat elevation in a workpiece depth. -
PublicationA review of factors influencing peri-implant bone loss( 2021-07-21)Dental implants report high survival rate for the treatment of patients with missing teeth and being one of the undeniable restoration techniques. However, peri-implant bone loss has recently arisen to be the highlight in contemporary implant therapy. Therefore, the possible causes that are detrimental to dental implants and surrounding tissues are important to be discovered. The present review focuses on the current etiologies of peri-implant bone loss and subsequent complications observed in clinical practices. A comprehensive literature search was conducted via PubMed, Scopus, and ScienceDirect databases using the related keywords. The literature reveals numerous etiological factors may initiate the loss of marginal bone in dental implant application: loading protocols, implant body placement, implant macro-design features, implant surface roughness, implantation site preparation, foreign body reaction, implant material particles detachment and contamination, and oral habit. Albeit the biomechanical, biological, or combination of factors are known to contribute in marginal bone resorption, the predictability of treatment modalities to handle the defect remains controversial and unclear. Further clinical trials and sophisticated quantitative assessment would be advantageous to help scrutinize the issue.