Now showing 1 - 2 of 2
  • Publication
    Energy absorption and failure behavior of Al/CFRP/GFRP hybrid tubes under quasi-static axial loading
    Fiber metal laminate (FML) is gaining increased interest among researchers in designing thin-walled tubes as an efficient energy absorber. The combination of aluminum tube and fiber-reinforced polymer (FRP) as an FML hybrid tube has successfully demonstrated enhanced crashworthiness performance of structures. Previous studies reported FML hybrid tubes employing a single type of FRP composite material as the laminate material. Investigations on the effect of stacking sequences of multiple types of FRP composite as laminate materials are limited and mostly focused on sandwich structures. This study aims to investigate the effect of reinforcement material as a laminate layer and stacking sequences on the crashworthiness characteristics of aluminum-FRP hybrid tubes under quasi-static axial compression loading. The crashworthiness characteristics and the failure behavior of aluminum monolithic tube, aluminum-single FRP material, and aluminum-multi FRP material hybrid tubes are tested and compared. Glass FRP (GFRP) demonstrates great potential as a laminate material for aluminum tube compared with carbon FRP (CFRP). Aluminum-GFRP and aluminum-GFRP-CFRP hybrid tubes exhibit a 26.4 % and 66.9 % increase in energy absorbed, respectively, compared with the monolithic aluminum tube. The specific energy absorption and crushing force efficiency of the aluminum-GFRP-CFRP hybrid tube show minimal reductions of 4.9 % and 6.2 %, respectively. GFRP is the better choice of laminate material for aluminum tubes compared with CFRP. Multiple FRP laminates show a larger crashworthiness enhancement of FRP hybrid tubes in achieving better crashworthiness performance of the energy absorber. These findings imply that the selection and stacking sequences of laminate material are vital in tailoring the performance of the hybrid tubes toward efficient energy absorbers.
  • Publication
    Computational Fluid Dynamics Analysis of Varied Cross-Sectional Areas in Sleep Apnea Individuals across Diverse Situations
    ( 2024-01-01)
    Faizal W.M.
    ;
    ; ; ; ;
    Misbah M.N.
    ;
    Haidiezul A.H.M.
    Obstructive sleep apnea (OSA) is a common medical condition that impacts a significant portion of the population. To better understand this condition, research has been conducted on inhaling and exhaling breathing airflow parameters in patients with obstructive sleep apnea. A steady-state Reynolds-averaged Navier–Stokes (RANS) approach and an SST turbulence model have been utilized to simulate the upper airway airflow. A 3D airway model has been created using advanced software such as the Materialize Interactive Medical Image Control System (MIMICS) and ANSYS. The aim of the research was to fill this gap by conducting a detailed computational fluid dynamics (CFD) analysis to investigate the influence of cross-sectional areas on airflow characteristics during inhale and exhale breathing in OSA patients. The lack of detailed understanding of how the cross-sectional area of the airways affects OSA patients and the airflow dynamics in the upper airway is the primary problem addressed by this research. The simulations revealed that the cross-sectional area of the airway has a notable impact on velocity, Reynolds number, and turbulent kinetic energy (TKE). TKE, which measures turbulence flow in different breathing scenarios among patients, could potentially be utilized to assess the severity of obstructive sleep apnea (OSA). This research found a vital correlation between maximum pharyngeal turbulent kinetic energy (TKE) and cross-sectional areas in OSA patients, with a variance of 29.47%. Reduced cross-sectional area may result in a significant TKE rise of roughly 10.28% during inspiration and 10.18% during expiration.