Now showing 1 - 10 of 39
  • Publication
    Temperature Distribution Analysis of Lithium-Ion Polymer Battery Surface
    The main objective of this study is to investigate the heat load generated by the Lithium-ion (Li-ion) battery during the completion of the cycle. Besides that, the objective is also to identify the most affected surface of the Li-ion battery towards the temperature during the charging and discharging process. An experiment is carried out for five different conditions of battery to obtain the data for heat load calculation purposes. The five conditions are differences in discharge ampere. From the result obtained there are differences in heat load generated by the battery during the charging and discharging process for every condition. Furthermore, the greater the discharge ampere, the lower the time taken for the battery to discharge and the higher the heat load generated by the battery. Besides that, an experiment to investigate the temperature distribution along the experiment is also carried out. Four surfaces of battery (front, right, left, back in vertical position of battery) are put into concern in obtaining the temperature distribution. Every surface gives a different temperature distribution during the experiment. Surface 4 recorded the highest average temperature distribution. Thus, the cooling system will consider the cooling capacity at this surface.
  • Publication
    Study of eddy current density distribution in a contactless breast cancer detection mechanism using magnetic induction spectroscopy
    Breast cancer is a throbbing disease that no longer needs an introduction. This is especially true among women due to their unique breast structure that naturally has more breast tissues compared to that of man’s. It is been forecasted that in 2015, a minimum of 60290 new cases of breast cancer will be reported. The goal of this study is to analytically evaluate the changes in the induced Eddy current densities as a function of di-electrical properties of the breast tissue with respect to tumor positioning as well as its size. This is achieved by running numerical simulations on the proposed mechanism of magnetic induction to detect tumors among healthy breast tissue via a 2D breast model configuration. The analytical results presented in this article, proved that the multi frequency magnetic induction principle is viable in detecting the breast lesions as small as 0.2 cm non-invasively through the distributions of the induced Eddy current density. While important pattern of the induced current were reflected when the tumors are located at the far ends of the breast diameter. The minimum results computational time with the proposed system is 10 s.
  • Publication
    Heat transfer improvement in simulated small battery compartment using metal oxide (CuO)/deionized water nanofluid
    Improving the heat transfer coefficient of working fluids is essential for achieving the best performance of manufacturing systems. As a replacement of conventional working fluids, nanofluids have a high potential for improving this heat transfer coefficient. However, nanofluids are seldom implemented in actual systems, and several factors should be considered before actual application. Accordingly, this study investigated the thermophysical properties and heat transfer rate of CuO/deionized water nanofluid with and without sodium dodecyl sulfate (SDS) surfactants. Three different volumetric concentrations of the nanofluid were prepared using a two-step preparation method. The experimental steps were divided into two phases: static and dynamic. In these experiments, the thermophysical properties of the prepared nanofluids and the heat transfer coefficient were measured using an apparatus designed based on an actual heat exchanger for a lithium ion polymer battery compartment. The effects of flow rate and surfactants on the heat transfer rate of the nanofluids with varying volumetric concentrations of 0.08%, 0.16%, and 0.40% were analyzed. The results indicate that the heat transfer rate increases considerably as the flow rate increases from 0.5 L/min to 1.2 L/min and with the presence of surfactants. The highest heat transfer rate was obtained at a 0.40% volumetric concentration of CuO/deionized water nanofluid with SDS surfactant.
  • Publication
    Approach to enhance the heat transfer of valve seats through thermal analysis
    The valve seat insert is a component of the engine cylinder head, whose primary function is to seal the combustion chamber and absorb the valve's heat, releasing it to the engine cylinder head. The valves experience high temperatures owing to high thermal loading and low heat absorption in the valve seat, which can potentially damage the engine. Therefore, the thermal characteristics of the valve seat must be optimised to increase the heat transmission between the valve and its seat. Here, three copper alloy valve seats, brass, beryllium copper, and bronze copper, were tested against the existing sintered iron valve seat, and their temperature maps were determined using actual engine operation conditions. The instantaneous heat transfer coefficients of the valves, seats, and engine cylinder head during the four-stroke cycle were evaluated using a one-dimensional thermal simulation analysis. The values obtained were used to assess the finite-element model using a three-dimensional thermal simulation in the Ansys software. The results show that the brass, beryllium-, and bronze-copper valve seats increased the overall heat flux by 4.46%, 4.16%, and 2.06%, respectively, compared to those for sintered iron. Thus, the results are essential to improve the thermal characteristics of the copper alloy valve seat imposed on the cylinder head. For validation, an experimental engine thermal survey and uncertainty magnification factors were used to validate the model. The results indicate that the maximum difference between the simulation and experimental values is 8.42%. Therefore, this approach offers a direct and comprehensible application for evaluating the temperature distribution, heat gradient, and heat flux of the cylinder head of air-cooled spark-ignition moped motorcycle engines using copper alloy valve seat materials at intermediate engine speeds. Furthermore, this method is applicable as a platform for the automotive industry to improve the heat transfer of the structural parts of internal combustion engines.
  • Publication
    Hurst exponent based brain behavior analysis of stroke patients using eeg signals
    The stroke patients perceive emotions differently with normal people due to emotional disturbances, the emotional impairment of the stroke patients can be effectively analyzed using the EEG signal. The EEG signal has been known as non-linear and the neuronal oscillation under different mental states can be observed by non-linear method. The non-linear analysis of different emotional states in the EEG signal was performed by using hurst exponent (HURST). In this study, the long-range temporal correlation (LRTC) was examined in the emotional EEG signal of stroke patients and normal control subjects. The estimation of the HURST was more statistically significant in normal group than the stroke groups. In this study, the statistical test on the HURST has shown a more significant different among the emotional states of normal subject compared to the stroke patients. Particularly, it was also found that the gamma frequency band in the emotional EEG has shown more statistically significant among the different emotional states.
  • Publication
    Thermal Management System Analysis Concentrate on Air Forced Cooling for Small Space Compartment and Heat Load
    ( 2021-12-01)
    Yahaya M.N.
    ;
    Ghani A.Z.A.
    ;
    ;
    Rahman A.A.
    ;
    Bakar S.A.
    ;
    ;
    Harun A.
    ;
    Hashim M.S.M.
    ;
    ; ;
    Kamarrudin N.S.
    Battery thermal management system (BTMS) plays an important thing as to control of the battery thermal behaviours. Recently, most of the manufacturer either in automobile, motorcycle, and electric vehicle (EV) industry are using this application of BTMS for their product. It is because BTMS promising the extend the period and lifespan of the battery and the battery system controlling the temperature distribution and circulation on the system. Lithium-ion battery is one of the common usages in BTMS. Lithium-ion battery promising the goals such as higher performance, better cycle stability, and improved protection are being followed with the selection and engineering of acceptable electrode materials. It also shows a goal for future such as high of the energy storage due to higher energy density by weight among other rechargeable batteries. However, there still have factor that are limiting the performance/application when using lithium-ion as battery thermal management system (BTMS). For example, the performance, cost, life, and protection of the battery. The main reason is therefore important in order to achieve optimum efficiency whenworking under different conditions. Hence, the best range of temperature and the cooling capacity of lithium-ion battery need to evaluate in order to increasing the lifespan of lithium-ion battery at the same time can increasing the performance of the cell. This study found that the higher the velocity of air, the higher the cooling capacity that gain from the surrounding. It also was strongly related to the dry bulb temperature of surrounding air.
  • Publication
    A review of the application and effectiveness of heat storage system using phase change materials in the built environment
    ( 2021-05-03)
    Ibrahim Z.
    ;
    Newby S.
    ;
    Hassani V.
    ;
    Ya'akub S.R.
    ;
    ; ;
    Global warming is the most significant threat that civilization faced within the 21st century. Buildings, which account for 40% of global consumption of energy and greenhouse gas emissions, play a key role in global warming. It is estimated that their destructive impact will grow by 1.8 percent per year by 2050, indicating that future energy consumption and emissions will be more critical than they are today. Therefore, the use of a latent heat storage system using phase change materials (PCM) is one of the effective ways of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCM has been widely used in latent heat thermal storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. Thermal energy conservation by latent heat is an ideal way to increase the thermal inertia of building envelopes, which would minimize temperature fluctuations, contributing to increased occupants' thermal comfort. For this reason, high-density PCM can be used effectively. This paper reviews recent studies of the application and effectiveness of using PCM in the built environment.
  • Publication
    Tensile characterizations of oil palm empty fruit bunch (Opefb) fibres reinforced composites in various epoxy/fibre fractions
    Oil palm empty fruit bunch (OPEFB) single fibers and reinforced composites were comprehensively characterized through tensile tests to assess their performance as potential reinforcing materials in polymer composites. The performances of OPEFB single fibers and reinforced composites with untreated and treated fibers conditions were compared. The fibers were variously treated with 3% sodium hydroxide, 2% silane, 3% sodium hydroxide mixed with 2% silane, and 3% sodium hydroxide prior to 2% silane for 2 hours soaking time. The highest toughness of the single fibers test was then selected to proceed with composites fabrication. The OPEFB composites were fabricated in 90:10, 80:20, 70:30, and 60:40 epoxy-fibre fractions. The result shows that the selected treated fiber composite exhibits better performance. The selected treated fiber composite increased the highest ultimate tensile strength by 145.3% for the 90:10 fraction. The highest Young’s Modulus was increased by about 166.7% for 70:30 fraction. Next, the highest toughness was increased by 389.5% for the 30:70 fraction. The treated fibers provided a better interlocking mechanism between the matrix and fibers in reinforced composites, thus improving their interfacial bonding.
  • Publication
    Development of Driving Simulation Experiment Protocol for the Study of Drivers’ Emotions by using EEG Signal
    The Brain-Computer Interface (BCI) is a field of research that studies the EEG signal in order to elevate our understanding of the human brain. The applications of BCI are not limited to the study of the brain wave but also include its applications. The studies of human emotions specific to the vehicle driver are limited and not vastly explored. The EEG signal is used in this study to classify the emotions of drivers. This research aims to study the emotion classifications (surprise, relax/neutral, focus, fear, and nervousness) while driving the simulated vehicle by analyse the EEG signals. The experiments were conducted in 2 conditions, autonomous and manual drive in the simulated environment. In autonomous driving, vehicle control is disabled. While in manual drive, the subjects are able to control the steering angle, acceleration, and brake pedal. During the experiments, the EEG data of the subjects is recorded and then analyzed.
  • Publication
    Effect of roadways plantation on signal propagation analysis in connected autonomous vehicle communication
    ( 2019)
    J S C Turner
    ;
    ; ; ; ; ;
    Zunaidi Ibrahim
    ;
    ;
    M A Fadzilla
    ;
    K A A Kassim
    ;
    M S A Khalid
    ;
    Z Jawi
    ;
    M H M Isa
    ;
    S A Z Murad
    ;
    At present, the development of autonomous vehicle has altered the outlook of modern transportation worldwide. The state-of-the-art vehicular communication for transportation system is advancing, especially in vehicle to infrastructure (V2I) communication. An effective communication between vehicle and infrastructure has become a significant part of autonomous transportation criteria. The necessity for high quality of service communication inspire for good planning and preparation in communication process. Per se, this paper proposes vegetation attenuation models for advance planning of communication process between vehicle to infrastructure, defined mainly by plants, trees and vegetation along the roadways in Malaysia. The channel measurement performed in Universiti Malaysia Perlis test-bed having large tall trees and low shrubs along the routes resulted in several interesting results which would shape the planning of CAV communication. It is observed that communication close to low plantation or shrub requires high power consumption as the range is significantly reduced. It is also learned that certain types of plantations allows for different level of signal attenuation depending on the antenna heights. The research also found out that the attenuation profile follows strictly the log normal distribution and as such certain planning could be made to reshape the communication process to cater for this.