Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. UniMAP Index Publications
  4. Publications 2021
  5. A review of the application and effectiveness of heat storage system using phase change materials in the built environment
 
Options

A review of the application and effectiveness of heat storage system using phase change materials in the built environment

Journal
AIP Conference Proceedings
ISSN
0094243X
Date Issued
2021-05-03
Author(s)
Ibrahim Z.
Newby S.
Hassani V.
Ya'akub S.R.
Shahriman Abu Bakar
Universiti Malaysia Perlis
Zuradzman Mohamad Razlan
Universiti Malaysia Perlis
Wan Khairunizam Wan Ahmad
Universiti Malaysia Perlis
DOI
10.1063/5.0048426
Abstract
Global warming is the most significant threat that civilization faced within the 21st century. Buildings, which account for 40% of global consumption of energy and greenhouse gas emissions, play a key role in global warming. It is estimated that their destructive impact will grow by 1.8 percent per year by 2050, indicating that future energy consumption and emissions will be more critical than they are today. Therefore, the use of a latent heat storage system using phase change materials (PCM) is one of the effective ways of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCM has been widely used in latent heat thermal storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. Thermal energy conservation by latent heat is an ideal way to increase the thermal inertia of building envelopes, which would minimize temperature fluctuations, contributing to increased occupants' thermal comfort. For this reason, high-density PCM can be used effectively. This paper reviews recent studies of the application and effectiveness of using PCM in the built environment.
Funding(s)
Universiti Malaysia Perlis
File(s)
Research repository notification.pdf (4.4 MB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies