Options
Muzamir Isa
Preferred name
Muzamir Isa
Official Name
Muzamir, Isa
Alternative Name
Isa, M.
Isa, Muzamir Bin
Isa, Muzamir
Isa, Muzamir A.M.
Bin Isa, Muzamir
Main Affiliation
Scopus Author ID
16642710600
Researcher ID
G-4076-2017
Now showing
1 - 4 of 4
-
PublicationThe magnetic flux density of various geometries of Rogowski Coil for overvoltage measurementsOvervoltage phenomenon is the common problem that always occurs in the power system and can cause the electrical system network breakdown, and in some cases, it may explode. The frequent overvoltage also can affect and degrade the lifespan of the electrical power system components and network. Thus, the overvoltage sensor is needed to overcome this problem matter. The Rogowski coil (RC) is one of an inductive coil group, and it is suitable for measuring the alternating current (AC) and transient currents or overvoltage. This paper demonstrated the effect of RC magnetic flux density, B with difference cross-section, geometries sizing and the number of turns by using Finite Element Method (FEM). Commonly, there are three types of RC widely used; rectangular, circular and oval. Each of these cross-sections has different characteristics in term of performance. The results have shown that the rectangular cross-section is better than oval and circular cross-section based on the number of magnetic flux density.
-
PublicationSynthesis of Zinc Oxide Nanoparticles via Cellar Spider Extract for Enhanced Functional Properties in Antimicrobial Activities( 2024-06-12)
;Afnan Uda M.N. ;Ibrahim N.H. ;Zain M.Z.M. ;Ilyas R.A.This study explores the green synthesis of zinc oxide nanoparticles (ZnO NPs) using cellar spider extracts as a sustainable alternative to traditional methods involving hazardous chemicals and radiation. The spider extracts effectively reduced zinc acetate dihydrate, yielding white precipitates indicative of ZnO NPs. Characterization through SEM revealed diverse morphologies, including spherical, rod-like, hexagonal, and uneven particles forming platelet-like aggregates. Further analyses, such as HPM, 3D nanoprofiler, and EDS, provided insights into size, shape, morphology, surface chemistry, thermal stability, and optical characteristics, quantifying the intended properties of the synthesized ZnO NPs. Antibacterial assays against E. coli and B. subtilis demonstrated significant antibacterial activity, affirming the nanoparticles' potential for antimicrobial applications. This green synthesis approach, validated through comprehensive characterization and quantitative measurements, offers a promising and environmentally friendly route for producing functional ZnO NPs.4 -
PublicationA Contemporary Review of High Voltage Partial Discharge Detection and Recognition Techniques( 2023-07-01)
;Bohari Z.H. ;Nasir M.N.M. ;Sulaima M.F.Ahmad E.Z.This review article provides a summary of the most advanced approaches and advancements in the detection and recognition of high voltage partial discharge (PD). It discusses numerous detecting technologies, such as electrical, acoustic, and optical approaches, as well as their merits and disadvantages. It also discusses current developments in signal processing and pattern recognition algorithms used for PD detection and classification. Lastly, the study covers the challenges and limitations in high voltage PD detection and identification studies, as well as potential future solutions.1 -
PublicationArthropods-mediated Green Synthesis of Zinc Oxide Nanoparticles using Cellar Spider Extract: A Biocompatible Remediation for Environmental Approach( 2024-06-12)
;Irfan M.A.R. ;Afnan Uda M.N. ;Huzaifah M.R.M. ;Ali M.M. ;Ibrahim N.H. ;Makhtar M.M.Z. ;Ng Q.H. ;Ruslan M.A.M.This study presents an eco-friendly approach to synthesizing zinc oxide nanoparticles (ZnO NPs) using extracts from cellar spiders, addressing environmental and health concerns associated with conventional methods. The spider extract efficiently reduced zinc acetate dihydrate, and the synthesized ZnO NPs underwent comprehensive quantitative characterization, including size, shape, morphology, surface chemistry, thermal stability, and optical properties using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), zeta potential measurements, thermogravimetric analysis (TGA), and UV-vis spectroscopy. The nanoparticles exhibited intended characteristics, and their adsorption capability for methylene blue (MB) was quantitatively assessed using the Freundlich isotherm model and pseudo-second-order kinetic model, providing numerical insights into MB removal efficiency. The study demonstrates the potential of these green-synthesized ZnO NPs for applications in environmental remediation, wastewater treatment, and antibacterial therapies, contributing to both sustainable nanomaterial development and quantitative understanding of their functional properties.3 1