Now showing 1 - 10 of 17
  • Publication
    Microstructural studies of Ag/TiO2 thin film; effect of annealing temperature
    ( 2021) ;
    C.H. Dewi Suryani
    ;
    A. Azliza
    ;
    ; ; ;
    V. Chobpattana
    ;
    L. Kaczmarek
    ;
    B. Jeż
    ;
    M. Nabiałek
    Microstructures are an important link between materials processing and performance, and microstructure control is essential for any materials processing route where the microstructure plays a major role in determining the properties. In this work, silverdoped titanium dioxide (Ag/TiO2) thin film was prepared by the sol-gel method through the hydrolysis of titanium tetra-isopropoxide and silver nitrate solution. The sol was spin coated on ITO glass substrate to get uniform film followed by annealing process for 2 hours. The obtained films were annealed at different annealing temperatures in the range of 300°C-600°C in order to observe the effect on crystalline state, microstructures and optical properties of Ag/TiO2 thin film. The thin films were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometry. It is clearly seen, when the annealing temperature increases to 500°C, a peak at 2θ = 25.30° can be seen which refers to the structure of TiO2 tetragonal anatase. The structure of Ag/TiO2 thin film become denser, linked together, porous and uniformly distributed on the surface and displays the highest cut-off wavelength value which is 396 nm with the lowest band gap value, which is 3.10 eV. Keywords: Ag/TiO2; Annealing Temperature; Microstructure; Optical Properties; Thin Film
  • Publication
    Microstructure evolution of Ag/TiO2 thin film
    ( 2021) ; ; ;
    Mohd Izrul Izwan Ramli
    ;
    ; ;
    Kazuhiro Nogita
    ;
    Hideyuki Yasuda
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wysłocki
    Ag/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.
  • Publication
    Fabrikasi dan penganodan komposit metalurgi serbuk aluminium-magnesium diperkuat gentian pendek alumina saffil
    Anodising process on powder metallurgy aluminium-magnesium composites reinforced with short fibre alumina SaffilTM has been studied. PM Al-Mg composites were fabricated using PM route with Mg powder as the alloying element and short fibre alumina SaffilTM as the reinforcements. Mg powder was added in the rate of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 wt% and short fibre alumina SaffilTM 5, 10, 15, 20 and 25 wt% to study the effect of adding those elements in various compositions. Microstructure analysis, density and porosity test and hardness test was used to determine the optimum weight percent of Mg powder and short fibre alumina SaffilTM in the PM Al-Mg composites. Result showed that 2.0 wt% of Mg is the best composition according to the surface morphology of the PM Al-Mg alloy with the least porosity. Meanwhile, the density and hardness recorded the highest value with this composition, 2.3 g/cm3 and 37.1 HVN accordingly. The optimum composition for short fibre alumina SaffilTM is 10% according to the density of 2.25 g/cm3, hardness value of 48 HVN, and had the most homogenous fibre distribution compared to the other compositions. After that, PM Al-Mg composite samples were coated in sulphuric acid anodising process. The study focused on effect of the various anodising voltage (10V, 12V, 14V, 16V and 18V) in 15% sulphuric acid and various concentration of sulphuric acid (5%, 10%, 15%, 20% and 25%) on the growth of a good anodising coating film. The anodising process were done in the room temperature (+25oC) for 60 minutes. The increasing of the coating film mass were recorded every 10 minutes for each anodising parameters. Cross sectional morphology was used to analyse the anodising coating film thickness formed on the surface of PM Al-Mg composites. The increasing of anodising voltage and concentration of sulphuric acid resulted on the increasing of anodising coating film. From the result, the most suitable anodising voltage is 16V and 15% concentration of sulphuric acid according to the coating film formed is uniform, less of porosity and showed the best rate of coating film mass. The maximum hardness value was also shown by anodising with 16V voltage (63HVN) and 15% concentration of sulphuric acid (64 HVN). After the anodising process, PM Al-Mg composite samples were tested in electrochemical testing in 3.5% NaCl solution to study the effect of various parameters of anodising coating on corrosion resistance. Tafel analysis showed that the corrosion rate was decreased and corrosion resistance was increased after the anodising coating process on PM Al-Mg composites. The minimum corrosion rate and maximum corrosion resistance were recorded by anodising with 16V voltage and 15% concentration of sulphuric acid, same goes to the best parameters of anodising. A good anodising coating can decrease the corrosion rate and increase the corrosion resistance of PM Al-Mg composite samples.
  • Publication
    Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review
    Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
      4
  • Publication
    Surface Modification of GO/TiO2 Thin Film by Sodium Dodecyl Sulphate for Photocatalytic Applications
    Photocatalyst material titanium dioxide (TiO2) and graphene oxide (GO) were used to improve the self-cleaning properties of thin films. The sol–gel spin-coating method was successfully used to synthesize GO/TiO2 thin films. Surface modification was applied to optimize the self-cleaning capabilities by adding several concentrations of sodium dodecyl sulfate (SDS) (0.1 w/v%, 0.2 w/v%, 0.3 w/v%, 0.4 w/v%, and 0.5 w/v%) to the parent solution. The synthesized thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, UV-visible spectroscopy, water contact angle analysis, and photocatalytic analysis. The AFM and SEM images revealed that as the SDS amount increased, the particles became less agglomerated, and the roughness of the surface reduced from 2.54 × 102 nm to 0.83 × 102 nm. The wettability analysis showed that when SDS increased to 0.4 w/v%, the water contact angle dropped to 15.30°, implying that the thin film exhibits hydrophilic qualities. A decrease in the GO/TiO2 band gap was obtained linearly with the increase in SDS addition from 3.17 eV to 2.75 eV. Finally, the improvement of the surface coating and reduction of the band gap enhanced the photocatalytic activity, which degraded 78.97% of methylene blue, which was obtained by 0.4SDS.
      2
  • Publication
    Self-cleaning property of ag/tio2 thin film
    Ag/TiO2 thin film was prepared by the sol-gel method through the hydrolysis of titanium tetraisopropoxide and silver nitrate solution. Spin coating method was used to get uniform film on ITO glass substrate followed by annealing process for 1 hour. After that, all the samples were characterised using GIXRD and FESEM and undergone water contact angle test and MB degradation. Silver ion concentrations were varied to observe the effect on crystalline state, morphology, wettability and photocatalytic properties. The results showed that Ag/TiO2 thin film was in anatase phase and it could degrade nearly 70% of methylene blue after 150 min illumination. The formed Ag/TiO2 thin film has excellent self-cleaning property with compact, continuous, smooth, and good hydrophilicity property.
      2
  • Publication
    The effect of polyethylene glycol addition on wettability and optical properties of GO/TiO2 thin film
    Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.
      2  1
  • Publication
    The effect of polyethylene glycol addition on wettability and optical properties of go/tio2 thin film
    ( 2021-08-02) ; ; ; ;
    Nabiałek M.
    ;
    Ramli M.M.
    ;
    Razak M.F.S.A.
    ;
    Sandu A.V.
    ;
    Sochacki W.
    ;
    Skrzypczak T.
    Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol‐gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X‐ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for micro-structure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visi-ble spectrophotometry (UV‐VIS) for the optical properties and wettability of the thin films by meas-uring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.
      3
  • Publication
    Microstructure evolution of Ag/TiO₂ thin film
    ( 2021) ; ; ;
    Mohd Izrul Izwan Ramli
    ;
    ; ;
    Kazuhiro Nogita
    ;
    Hideyuki Yasuda
    ;
    Marcin Nabiałek
    ;
    Jerzy J. Wysłocki
    Ag/TiO₂ thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO₂ thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO₂ thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO₂ thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO₂ also increased in terms of area and the number of junctions. The growth rate of Ag/TiO₂ at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.
      11  17
  • Publication
    Factors of Controlling the Formation of Titanium Dioxide (TiO2) Synthesized using Sol-gel Method - A Short Review
    There have been experiments on TiO2 thin films synthesized utilizing sol-gel techniques. The sol-gel method is a straightforward technology that gives numerous benefits to the researcher, for instance, material's reliability, reproducibility, and controllability. Following from there, it can be utilized to make high-quality nano-structured thin films. According to previous studies, the TiO2 films' characteristics occur to be highly dependent on the production parameters and initial materials utilized. Controlling the formation of TiO2 thin films with the sol-gel method was momentarily discussed here.
      1