Options
Dewi Suriyani Che Halin
No Thumbnail Available
Preferred name
Dewi Suriyani Che Halin
Official Name
Halin, Dewi Suriyani Che
Alternative Name
Che Halin, Dewi Suriyani
Che Halin, D. S.
Suriyani Che Halin, Dewi
Halin, Dewi Suriyani Che
Halin, D. S.Che
Halin, D. S.C.
D. S., Che Halin
Main Affiliation
Scopus Author ID
36158106300
Researcher ID
AAC-9478-2019
Now showing
1 - 10 of 26
-
PublicationMesoporous Structure of Doped and Undoped PEG on Ag/TiO2 Thin Film( 2019-08-14)
;Abdul Razak K. ;Azani A.Sepeai S.In this reaserch, photocatalyst silver titanium dioxide was doped and modified by Polyethylene Glycol (PEG). The purpose of the present study was to analyse the synthesized Ag/TiO2 thin film doped and undoped PEG. Ag/TiO2 thin films on silicon wafer have been prepared by sol-gel spin coating. The samples were characterized by Grazing Incidence X-ray diffraction (GIXRD), Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscope (AFM). The doped and undoped PEG Ag/TiO2 thin films showed a mesoporous TiO2 matrix which includes TiO2 crystallites of 10-20 nm in size and small Ag nanoparticles (white spots) with various sizes ranging from 10 to 30 nm. However, doped PEG Ag/TiO2 thin film showed the Ag nanoparticles became agglomerates but still remained roughly uniform on the surface. -
PublicationMicrostructure evolution of Ag/TiO2 thin film( 2021)
;Mohd Izrul Izwan Ramli ;Kazuhiro Nogita ;Hideyuki Yasuda ;Marcin NabiałekJerzy J. WysłockiAg/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively. -
PublicationSurface Modification of GO/TiO2 Thin Film by Sodium Dodecyl Sulphate for Photocatalytic Applications( 2024-01-01)
;Vizureanu P. ;Sandu A.V.Mohamad N.Photocatalyst material titanium dioxide (TiO2) and graphene oxide (GO) were used to improve the self-cleaning properties of thin films. The sol–gel spin-coating method was successfully used to synthesize GO/TiO2 thin films. Surface modification was applied to optimize the self-cleaning capabilities by adding several concentrations of sodium dodecyl sulfate (SDS) (0.1 w/v%, 0.2 w/v%, 0.3 w/v%, 0.4 w/v%, and 0.5 w/v%) to the parent solution. The synthesized thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, UV-visible spectroscopy, water contact angle analysis, and photocatalytic analysis. The AFM and SEM images revealed that as the SDS amount increased, the particles became less agglomerated, and the roughness of the surface reduced from 2.54 × 102 nm to 0.83 × 102 nm. The wettability analysis showed that when SDS increased to 0.4 w/v%, the water contact angle dropped to 15.30°, implying that the thin film exhibits hydrophilic qualities. A decrease in the GO/TiO2 band gap was obtained linearly with the increase in SDS addition from 3.17 eV to 2.75 eV. Finally, the improvement of the surface coating and reduction of the band gap enhanced the photocatalytic activity, which degraded 78.97% of methylene blue, which was obtained by 0.4SDS.2 -
PublicationFactors of Controlling the Formation of Titanium Dioxide (TiO2) Synthesized using Sol-gel Method - A Short Review( 2022-01-24)
;Abdul Razak K. ;Mahmed N. ;Azani A.Chobpattana V.There have been experiments on TiO2 thin films synthesized utilizing sol-gel techniques. The sol-gel method is a straightforward technology that gives numerous benefits to the researcher, for instance, material's reliability, reproducibility, and controllability. Following from there, it can be utilized to make high-quality nano-structured thin films. According to previous studies, the TiO2 films' characteristics occur to be highly dependent on the production parameters and initial materials utilized. Controlling the formation of TiO2 thin films with the sol-gel method was momentarily discussed here.2 -
PublicationThe effect of GO/TiO2 thin film during photodegradation of methylene blue dye( 2021-09-01)Chobpattana V.Titanium (IV) isopropoxide (TTIP) was used to synthesize GO/TiO2 thin films using a sol-gel spin-coating method onto a glass substrate, undergoing an heat tretment at 350 °C. Several amounts of graphene oxide (GO) (0-20mg) were weighed into a sol solution of TiO2 to produce GO/TiO2 thin films. The thin film samples were characterized by X-ray diffraction (XRD) to analyze the samples’ phase and by scanning electron microscopy (SEM) to analyze the samples’ microstructure. Physical testing such as water contact angle (WCA) was analyzed using an optical microscope with J-Image software. In contrast, the optical band gap and photodegradation of methylene blue under sunlight irradiation of the thin film was analyzed using UV-VIS spectrophotometry. GO5 thin film sample showed low-intensity anatase phase formation, where the microstructure revealed a larger surface area with the addition of GO. WCA reveals that GO/TiO2 thin film exhibits super hydrophilic properties where the angle decreases from 37.83° to 4.11°. The optical result shows that GO has improved the absorption edges by expanding into visible regions. Moreover, due to the existence of GO 3.30 eV band gap energy of TiO2 decreases from to 3.18 eV obtained by GO5. The improved adsorption edge allows Ti3+, O2 and interstitial states to be formed in low valence states with energy underneath than in the TiO2 band gap. Therefore, the photodegradation of methylene blue (MB) dye increases from 48 % to 59 % in the GO/TiO2 thin film.
4 1 -
PublicationSynthesis of Zn/TiO2 Thin Films for Self-Cleaning Applications( 2022-07-01)
;Abidin A.S.Z. ;Azani A. ;Sandu A.V. ;Vizureanu P. ;Kaczmarek L. ;Garus S.Garus J.Titanium dioxide (TiO2) thin film has been widely used in semiconductor applications. The surface modification on TiO2 has been done by adding zinc (Zn) in order to improve surface wettability and enhance the photocatalysis efficiency for solar cell applications. Self-cleaning technology is very important to sustain the efficiency of the solar cell and reduce the cost of the maintenance of the solar cell. In this work, the sol–gel method was used due to the economic factor and its best efficiency. The sol–gel method is a wet chemical technique involving several steps, such as hydrolysis and polycondensation, gelation, aging, drying, densification, and crystallization. The X-Ray diffraction pattern shows that anatase and rutile phases were detected at 2θ = 36.3864◦. It was clearly seen at 4% Zn-doped TiO2 annealed at 400◦C that due to the increment of Zn concentration, the phase transformed from the anatase phase to the rutile phase at high temperature. The scanning electron microscope micrograph shows that Zn concentration affects grain size. The water contact angle produced when 4% Zn-doped TiO2 was annealed at 300◦C, was 18◦ — higher than in the sample of 4% Zn-doped TiO2 annealed at 400◦C. These results clearly showed that the dopant concentration and the annealing temperature influence the properties of TiO2 for a self-cleaning application.2 -
PublicationMicrostructure evolution of Ag/TiO₂ thin film( 2021)
;Mohd Izrul Izwan Ramli ;Kazuhiro Nogita ;Hideyuki Yasuda ;Marcin NabiałekJerzy J. WysłockiAg/TiO₂ thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO₂ thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO₂ thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO₂ thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO₂ also increased in terms of area and the number of junctions. The growth rate of Ag/TiO₂ at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.11 17 -
PublicationEffect of polyethylene glycol and sodium dodecyl sulphate on microstructure and self-cleaning properties of graphene oxide/TiO2 thin film( 2020-09-01)
;Azani A. ;Chobpattana V.Kaczmarek L.In this study, a sol gel procedure for preparation of TiO2 thin films with graphene oxide (GO) was developed. The effect of PEG and SDS addition on the microstructure of the films as well as the photocatalytic activity of the thin film was also investigated. The morphology and surface structure of the films were studied by SEM and AFM while the photocatalytic activity of the films was analyzed by measuring the degradation of methylene blue under sunlight irradiation using UV-Vis spectrophotometer. It was found that GO/TiO2 thin film with PEG shows a smaller and porous particle while GO/TiO2 thin film with SDS formed a very smooth surface and very fine particles. Therefore, in AFM analysis reveals that surface roughness decreases with the addition of PEG and SDS. Finally, the photocatalytic activity showed that GO/TiO2 thin film with SDS have the most effective self-cleaning property which degrade 64% of methylene blue that act as model of contaminants.1 -
PublicationSynthesis of Ag-TiO2thin film - Molarity and temperature effect on Microstructure( 2020-08-01)
;Razak K.A. ;Azani A. ;Mahmed N. ;Ramli M.M. ;Chobpattana V.KaczmarekAg-TiO2thin films with different concentration of silver (Ag) added were successfully deposited onto Si-substrate via sol-gel spin coating method. The phase analysis and microstructures of Ag-TiO2thin films have been characterized by X-ray diffractometer and scanning electron microscope. X-ray diffraction spectra show existing different phases influenced by the concentration of the Ag and the annealing temperature. The micrograph of scanning electron microscopy revealed the thin films annealed at 600 °C with 7 mol% of Ag concentration which shows that the Ag particles were found like a white dot formed on the grain of TiO2thin films.2 -
PublicationSelf-cleaning property of ag/tio2 thin film( 2020-01-01)Chobpattana V.Ag/TiO2 thin film was prepared by the sol-gel method through the hydrolysis of titanium tetraisopropoxide and silver nitrate solution. Spin coating method was used to get uniform film on ITO glass substrate followed by annealing process for 1 hour. After that, all the samples were characterised using GIXRD and FESEM and undergone water contact angle test and MB degradation. Silver ion concentrations were varied to observe the effect on crystalline state, morphology, wettability and photocatalytic properties. The results showed that Ag/TiO2 thin film was in anatase phase and it could degrade nearly 70% of methylene blue after 150 min illumination. The formed Ag/TiO2 thin film has excellent self-cleaning property with compact, continuous, smooth, and good hydrophilicity property.
2
- «
- 1 (current)
- 2
- 3
- »