Options
Anas Mohd Noor
Preferred name
Anas Mohd Noor
Official Name
Anas, Mohd Noor
Alternative Name
Mohd Noor, Anas
Main Affiliation
Scopus Author ID
57190394249
Researcher ID
DVM-0848-2022
Now showing
1 - 10 of 17
-
PublicationDevelopment of Real Time Arsenic Heavy Metal Concentration Monitoring System( 2021-11-25)
;Hilmi W.N.W.Q.W. ;Fook C.Y.Rosly S.This paper focuses on the ongoing development of real-time monitoring system with implementing the Internet of Things (IoT) element for arsenic heavy metal concentration in paddy field using pH sensor for data collection. The pH sensor will detect the hydrogen ion concentration from the prepared soil put in pot contained with various arsenic concentration. The developed system is then compared with the pH sensor in the market to verify its accuracy and sensitivity. The collected data will be transferred wirelessly into data cloud so that it can store the previous and current reading data. Besides, the system’s function is also to ensure the safeness of paddy plant to be planted with knowing the right amount of arsenic concentration can be passed. -
PublicationA Review on Magnetic Induction Spectroscopy Potential for Fetal Acidosis Examination( 2022-02-01)
;Halim S.F.A. ;Pusppanathan J. ;Muji S.Z.M. ;Rahim R.A. ;Engku-Husna E.I.Fetal acidosis is one of the main concerns during labor. Currently, fetal blood sampling (FBS) has become the most accurate measurement of acidosis detection. However, it is invasive and does not provide a real time measurement due to laboratory procedures. Delays in diagnosis of acidosis have caused serious injury to the fetus, especially for the brain and the heart. This paper reviews the new technique in diagnosis of acidosis non-invasively. Magnetic Induction Spectroscopy (MIS) has been proposed to be a new device for acidosis detection in recent years. This paper explains the basic principle of MIS and outlines the design specifications and design considerations for a MIS pH probe. It is expected that readers will gain a basic understanding of the development of a MIS pH probe from this review. -
PublicationSingle Channel Magnetic Induction Measurement for Meningitis Detection( 2021-01-01)
;Ahmed A.A. ;Ali M.H. ;Pusppanathan J. ;Rahim R.A. ;Muji S.Z.M.Bacterial meningitis is one of the most common and prominent infections which infects the central nervous system through the tissue layers and membranes that cover our brain and spinal cord. It is a staggering and fatal illness that kills patients within hours. The number of meningitis cases that has been recorded annually around the world are one million cases and 135,000 deaths. Early detection and start of sufficient treatment are considered as the main determinants for better result. MIT mechanism is noncontact electrodes of impedance measurement. This mechanism uses induction principle instead of contact electrodes to get the required information. This paper presents an overview on the potential of Magnetic induction tomography (MIT) in detecting meningitis disease. In MIT principle, single channel measurement process which consist of transmitter (Tx) and receiver (Rx) coil has been studied. In this field is disclosed about passive electrical field (PEP) which focuses on the three parameters which are dielectric permittivity, electrical conductivity, and magnetic permeability. In addition, this research project involves experimental setup. The applied frequency is between 1–10 MHz. Finally, in this project, the performance of the square coil with 12 number of turns (5Tx–12Rx) with 10 MHz frequency has been identified as the suitable transmitter-receiver pair and the optimum frequency for detecting the conductivity property distribution of brain tissues. -
PublicationElectromyography Signal Pattern Recognition for Movement of Shoulder( 2021-11-25)
;Muhammad Asymawi Mohd ReffinChong Yen FookPectoralis major and deltoid are two muscles that are associated with the movement of the shoulder. Electromyography (EMG) signal acquired from these two muscles can be used to classify the movement of the shoulder based on pattern recognition. In this paper, an experiment for EMG data collection involves eight healthy male subjects who perform four shoulder movements which are flexion, extension, internal rotation and external rotation. Feature extraction of EMG data is done using root mean square (RMS), variance (VAR) and zero crossing (ZC). For pattern recognition, the classifiers that are used are Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA). Classification results shows highest accuracy on ZC feature using an SVM classifier with cubic kernel. The study on shoulder movement using EMG of pectoralis and deltoid muscles could be extended on arm amputees based on hypothesis that the EMG signal could be utilized for control of robotic prosthetic arm.1 -
PublicationClassification of Electromyography Signal from Residual Limb of Hand Amputees( 2022-01-01)
;Al-Mahdi Y.S.M. ;Fook Chong YenSeveral researchers had worked on collecting electromyography (EMG) signal from amputees and come out with dataset that could be utilized for study in EMG signal processing and classification for decoding of amputee movement intention. This paper presents the work on classification of EMG signal based on the residual limb of amputees with intuitive hand movement based on interactive exercises. Dataset is obtained from NINAPRO public database website where 11 amputee subjects performed intuitive exercise of 17 hand gestures and EMG signal is acquired from the residual arm. Eight feature extraction methods are performed to obtain the EMG feature which are Mean, Minimum, Median, Skewness, Kurtosis, Approximate Entropy, Fuzzy Entropy and Kolmogorov Complexity. Two classifiers are used for EMG classification which are k-Nearest Neighbour and Ensemble classifier. Results shows average accuracy of 87.65% with Ensemble classifier for classification of movement exercise with all features of EMG is used as input to classifier.1 -
PublicationIntraocular MEMS Capacitive Pressure Sensor( 2021-01-01)Microelectromechanical system (MEMS) sensors are suitable for measuring intraocular pressure (IOP). IOP measurement is useful for monitoring diseases such as glaucoma. The average pressure range for healthy persons is within 10–20 mmHg. A pressure beyond this range could damage the eye nerves and causes of blindness. Thus, a sensor for measuring the pressure should provide excellent accuracy and sensitivity. Intraocular capacitive pressure sensors are widely used in measurement of IOP. They offer high sensitivity and low noise, including invariance to temperature. Thus, the capacitive pressure sensor is performed better than other types of sensing methods. In this work, capacitive pressure sensors are designed and analyzed using FEM. The sensitivity and performance of a corrugated diaphragm, slot-type, square, and circular types of sensors designed are analyzed. Different shape of the sensor provides a different characteristic such as sensors pressure sensitivity, mechanical stress, and maximum deflection. As a result, corrugated diaphragm and slot-type sensors designed performs better than the flat diaphragm and non-slotted sensors designed. We show that four slotted non-corrugated square and circular designs have a high sensitivity, which is 0.157 mF higher than the eight slotted design. However, for corrugated design, eight slotted shows sensitivity is 0.147 mF higher and linearity analysis than four slotted sensor design. Circular shape design for eight slotted design, on the other hand, have 0.631 mF higher than the four slotted design. Corrugated design is more sensitive when a load is applied, while slotted design reduces the effect of residual stress and stiffness of the diaphragm. Thus, it is an advantage of using the FEM method for further analysis of sensor performance optimization.
1 -
PublicationInitial Results on Primary Field Cancellation of Magnetic Induction Spectroscopy Technique for Fetal Acidosis Detection using COMSOL Multiphysics( 2021-11-25)
;Siti Fatimah Abdul Halim ;Ahmed A.A. ;Pusppanathan J. ;Muji S.Z.M.Rahim R.A.Monitoring of fetal condition during labor could save hundred lives in a single year. During labor, fetus is at critical condition as acidosis may occur suddenly without any early symptoms. Invasive method such as Fetal Blood Sampling (FBS) has been used to detect the decline in pH level of fetus. However, fetal loss rate after FBS may range from 1.4% up to 25%. In this paper, magnetic field induction spectroscopy was implemented to determine fetal acidosis by using primary magnetic field cancellation technique. Magnetic Induction Spectroscopy (MIS) probe was design where transmitter coil (TX) is perpendicular to receiver coil (RX). The result shows that the secondary magnetic field produced have been successfully measured without any interruption from primary magnetic field. By using transmitter input 1A, it shows that voltage is inversely proportional to the blood pH due to the conductivity properties of blood.1 -
PublicationModelling and Simulation using Finite Element Method of Surface Acoustic Wave Biosensor for Gas Detection Application( 2021-11-25)A surface acoustic wave (SAW) sensor detects changes in physical properties such as mass and density on its surface. Compared to other types of sensors, SAW sensor have a good stability, high selectivity and sensitivity, fast response, and low-cost. On the other hand, to design and optimize a SAW biosensor requires a long process including time and cost using conventional methods. Therefore, numerical simulation and computational modelling are useful and efficiently conduct analysis for the SAW biosensor. In this paper, a numerical simulation technique is used to analyse the SAW device sensitivity for the application of gas detection. The SAW biosensor can detect very small mass loading by changing its sensor resonance frequency. The two-dimensional (2D) device model is based on a two-port SAW resonator with a gas sensing layer. We made two design of SAW biosensor device with frequency of 872 MHz and 1.74 GHz. A gas with vary concentration from 1 to 100 ppm were used to determine the change of the device resonance frequency. As a result, the high frequency (1.74 GHz) device, shows that the resonance frequency is shifted larger than to the low frequency (872 MHz) device. In addition, the high frequency device offers five times more sensitivity than the low frequency device. By changing the sensor design, the sensor characteristics such as sensitivity can be altered to meet certain sensing requirements. Numerical simulation provides advantages for sensor optimization and useful for nearly representing the real condition.
1 -
PublicationAn Open-Source, Miniature UV to NIR Spectrophotometer for Measuring the Transmittance of Liquid Materials( 2022-01-01)
;Fook Chong YenBasri Noor CahyadiThe primary disadvantages of commercial spectrophotometers are expensive, heavy, and not portable. Furthermore, conventional instruments are only suitable to be used in a specialized laboratory. Even though some commercially available small-size instruments or devices are available, the price is still high. Therefore, a low-cost device is necessary without sacrificing accuracy and sensitivity. In this work, a low-cost, configurable, open-source and accurate portable spectrophotometer device was developed for education and laboratory analytical use. Commercially available photodetector is utilized as main component of the device due to broad spectral range from ultraviolet to near infra-red. The device performs well over a wide range of spectral wavelengths with small errors. We presume that the use of this work can offer a alternative for affordable and accurate device that is comparable to the commercially available products which also suitable for many applications.1 -
PublicationSingle Channel Magnetic Induction Measurement for Meningitis Detection( 2021-01-01)
;Aiman Abdulrahman Ahmed ;Ali M.H. ;Pusppanathan J. ;Rahim R.A. ;Muji S.Z.M.Ahmad Faizal SallehBacterial meningitis is one of the most common and prominent infections which infects the central nervous system through the tissue layers and membranes that cover our brain and spinal cord. It is a staggering and fatal illness that kills patients within hours. The number of meningitis cases that has been recorded annually around the world are one million cases and 135,000 deaths. Early detection and start of sufficient treatment are considered as the main determinants for better result. MIT mechanism is noncontact electrodes of impedance measurement. This mechanism uses induction principle instead of contact electrodes to get the required information. This paper presents an overview on the potential of Magnetic induction tomography (MIT) in detecting meningitis disease. In MIT principle, single channel measurement process which consist of transmitter (Tx) and receiver (Rx) coil has been studied. In this field is disclosed about passive electrical field (PEP) which focuses on the three parameters which are dielectric permittivity, electrical conductivity, and magnetic permeability. In addition, this research project involves experimental setup. The applied frequency is between 1–10 MHz. Finally, in this project, the performance of the square coil with 12 number of turns (5Tx–12Rx) with 10 MHz frequency has been identified as the suitable transmitter-receiver pair and the optimum frequency for detecting the conductivity property distribution of brain tissues.1