Options
Norsuria Mahmed
Preferred name
Norsuria Mahmed
Official Name
Norsuria, Mahmed
Alternative Name
Mahmed, Norsuria
Mahmed, N.
Norsuria, Mahmed
Norsuria, M.
Main Affiliation
Scopus Author ID
24802694300
Researcher ID
FOC-8505-2022
Now showing
1 - 10 of 43
-
PublicationThe effect of Spinacia )leracea dye absorption time on ZnO-based dye-sensitized solar cells’ electrical performance( 2022-12)
;Kaiswariah Magiswaran ;Siti Norhafizah IdrisZuraida Abal AbasDye-sensitized solar cells (DSSC) have attracted much attention over the past 20 years due to their significance in energy conversion. However, the dye soaking time may significantly impact the efficacy of the photoanode semiconductor to carry the electronic charge to which the dye molecules adhere. An optimized dye soaking time may prevent the recombination of photo-excited electrons that are injected into the semiconductor of the DSSC. This study scrutinized the dependence of the zinc oxide (ZnO) photoanode soaking time of Spinacia oleracea (spinach) dye on the photocurrent-voltage characteristics. The ZnO film layer (photoanode) was prepared with commercial ZnO nanopowder and applied onto a fluorinedoped tin oxide (FTO) glass substrate using the doctor blade method. The prepared DSSCs’ were subjected to a variety of characterizations, including current density-voltage (J-V) characterization, UV-visible characterization, scanning electron microscope (SEM), and Xray diffraction (XRD). Comparing four variations of dye soaking time, ZnO-based DSSC photoanode soaked in the dye for an hour achieved an optimum efficiency of 0.03 %. This study proved that the efficiency of a DSSC can be improved by optimizing the dye soaking time. -
PublicationReview on performance of lithium titanate and its impurities dopant as a lithium-ion battery anode( 2024-03)
;Eva Nurhaliza ;M. KomiyamaLi-ion batteries are the main source of energy for electronic devices such as cameras, calculators, mobile phones, laptops, and electric vehicles. Among the materials being considered, lithium titanate (𝐿𝑖4𝑇𝑖5𝑂12) has become a promising anode material due to its high stability and safety, as well as enabling high operability without sacrificing lifetime. However, in order to further improve performance and customise properties for specific applications, impurity dopants have been investigated as a means of modifying 𝐿𝑖4𝑇𝑖5𝑂12 performance. This paper examines 𝐿𝑖4𝑇𝑖5𝑂12 and its impurities as anode materials. Starting with a basic understanding of the crystal structure and characteristics of 𝐿𝑖4𝑇𝑖5𝑂12, its properties and applications. Besides, this study explores the effects of different dopants on the 𝐿𝑖4𝑇𝑖5𝑂12 on battery parameters. Based on various research studies and recent developments, the review summarises the current knowledge about 𝐿𝑖4𝑇𝑖5𝑂12 and impurity dopants. Each dopant's different effects on the lattice structure highlight its importance for further development. As a result, it may lead to future research of 𝐿𝑖4𝑇𝑖5𝑂12 anodes for large-scale energy storage technology. -
PublicationInfluence of carbonization conditions and temperature variations on the characteristics of coconut shell carbon( 2024-03)
;Yee Wen Yap ;Nurul Najiha Abu Bakar ;Siti Norsaffirah ZailanMohd Yusry Mohamad YunusThis research aims to study the impact of carbonization atmospheres (ambient and nitrogen) and temperature on the properties of the coconut shell carbon (CSC) formed. To characterize the properties of CSC, the char yield percentage was calculated. Scanning Electron Microscopy (SEM) was used to study the surface morphology of CSC while X-ray Diffraction (XRD) analysis was done to identify the degree of graphitization. The carbon formed by carbonization under the nitrogen atmosphere yields lower char percentages compared to the ambient atmosphere. When the carbonization temperature elevated, both atmospheres produced a lower char yield percentage. This result is aligned with the SEM analysis where more and larger pores were observed from the carbon produced at higher temperatures and the result was further enhanced under a nitrogen atmosphere. It was found that the char yield of CSC decreased from 20.9% to 11.4% when the carbonization temperature increased from 400°C to 1000°C under the ambient atmosphere. More significant changes were formed through the carbonization process under the nitrogen atmosphere (from 18.3% to 6.03%). Pores formed when the volatile materials are released due to the elevated carbonization temperature, resulting in a reduction in total weight thus, the char yield percentage. From the XRD, all CSC produced from both atmospheres with varying temperatures poses an amorphous XRD pattern. However, the right shifted peak and the presence of an additional peak of ~40° suggest that under different temperatures and atmospheres, the crystallinity of the CSC produced was affected. This research provides insight for optimizing CSC production in the future to enhance the application of CSC. -
PublicationGround coffee waste-derived activated carbon a sustainable adsorbent and photocatalyst for effective methylene blue dye degradation( 2024-12)
;Or Yang Jai Xien ;Siti Norsaffirah ZailanThis study focuses on harnessing the potential of ground coffee waste (GCW) as a valuable precursor to produce activated carbon (AC) through pyrolysis. The objective is to develop an eco-friendly adsorbent and photocatalyst for environmental remediation applications. Preceding pyrolysis at 350°C for 3.5 hours, GCW was subjected to activate using hydrochloric acid (HCl) and potassium hydroxide (KOH). The resulting AC was subsequently combined with titanium dioxide (TiO2) photocatalyst powder, resulting in the creation of TiO2-AC composites that functioned both as adsorbent and photocatalyst. The TiO2-AC composites were investigated for their adsorption and photocatalytic capabilities in the degradation of 10 ppm methylene blue dye under sunlight exposure for 240 minutes. Morphological analysis revealed a sponge-like structure for both HCl-activated AC and NaOH-activated AC, with HCl-AC exhibiting more pronounced and uniform pores compared to KOH-AC. Remarkably, GCW demonstrated the highest removal efficiency, effectively removing 97.34% of methylene blue, outperforming HCl-AC (16.89%) and KOH-AC (10.41%). Nonetheless, the AC-TiO2 composites, specifically HCl-AC/TiO2 and KOH-AC/TiO2, also exhibited considerable removal efficiencies of 93.31% and 92.46%, respectively. These findings underscore the promising potential of utilizing GCW-derived activated carbon as an environmentally sustainable solution for organic pollutant treatment and herald its significance in promoting greener approaches to waste utilization and environmental protection. -
PublicationErratum to: Recent improvements on TiO₂ and ZnO nanostructure photoanode for dye sensitized solar cells: a brief review( 2017-11-22)
;Nurnaeimah JamalullailFigure 1 in the article should be replaced by the figure below. (Figure Presented). -
PublicationThe Effect of Spinacia oleracea Dye Absorption Time on ZnO-based Dye-Sensitized Solar Cells’ Electrical Performance( 2022-12-01)
;Magiswaran K. ;Idris S.N.Abas Z.A.Dye-sensitized solar cells (DSSC) have attracted much attention over the past 20 years due to their significance in energy conversion. However, the dye soaking time may significantly impact the efficacy of the photoanode semiconductor to carry the electronic charge to which the dye molecules adhere. An optimized dye soaking time may prevent the recombination of photo-excited electrons that are injected into the semiconductor of the DSSC. This study scrutinized the dependence of the zinc oxide (ZnO) photoanode soaking time of Spinacia oleracea (spinach) dye on the photocurrent-voltage characteristics. The ZnO film layer (photoanode) was prepared with commercial ZnO nanopowder and applied onto a fluorine-doped tin oxide (FTO) glass substrate using the doctor blade method. The prepared DSSCs’ were subjected to a variety of characterizations, including current density-voltage (J-V) characterization, UV-visible characterization, scanning electron microscope (SEM), and X-ray diffraction (XRD). Comparing four variations of dye soaking time, ZnO-based DSSC photoanode soaked in the dye for an hour achieved an optimum efficiency of 0.03 %. This study proved that the efficiency of a DSSC can be improved by optimizing the dye soaking time.1 -
PublicationThermal insulation and mechanical properties in the presence of glass bubble in fly ash geopolymer paste( 2022-01-01)
;Noor Fifinatasha Shahedan ;Ikmal Hakem Abdul Aziz ;Kadir A.A. ;Sandu A.V.The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/ cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.1 -
PublicationRecent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review( 2023-05-01)
;Yap Y.W. ;Mohamad I.S.Mohamad Yunus M.Y.Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.4 -
PublicationA Comprehensive Review of Midrange Wireless Power Transfer Using Dielectric Resonators( 2021-01-01)
;Faiz Wan Ali W.F. ;Kamarudin M.R. ;Nurulazlina RamliMagnetic resonant coupling (MRC) is one of the techniques that are widely used in wireless power transfer (WPT) systems. The technique is commonly used for enhancing distance while maintaining power transfer efficiency (PTE). Many studies have investigated new technologies to extend the distance of MRC while maintaining high PTE values. The most promising technique to date in MRC is the addition of a resonator between the transmitter and the receiver coil. The implementation of the resonator varies based on different designs, sizes, and material types, although the outcomes remain unsatisfactory. By introducing dielectric material resonators, PTE can be improved by lowering the ohmic loss which becomes a problem on conventional resonators. This study presents a general overview on the use of dielectric material as a resonator in MRC WPT technology and its technological development. The basic operation of MRC WPT is summarized with up-to-date technical improvements related to dielectric material as a resonator in the field of WPT. An overview of the current limitations and challenges of this technique is also highlighted in this study.1 -
PublicationNear-Infrared (NIR) Silver Sulfide (Ag₂S) Semiconductor Photocatalyst Film for Degradation of Methylene Blue Solution( 2023-01-01)
;Mubarokah Z.R. ;Błoch K. ;Nabiałek M. ;Baltatu M.S. ;Sandu A.V.Vizureanu P.A silver sulfide (Ag2S) semiconductor photocatalyst film has been successfully synthesized using a solution casting method. To produce the photocatalyst films, two types of Ag2S powder were used: a commercialized and synthesized powder. For the commercialized powder (CF/comAg2S), the Ag2S underwent a rarefaction process to reduce its crystallite size from 52 nm to 10 nm, followed by incorporation into microcrystalline cellulose using a solution casting method under the presence of an alkaline/urea solution. A similar process was applied to the synthesized Ag2S powder (CF/syntAg2S), resulting from the co-precipitation process of silver nitrate (AgNO3) and thiourea. The prepared photocatalyst films and their photocatalytic efficiency were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy (UV-Vis). The results showed that the incorporation of the Ag2S powder into the cellulose films could reduce the peak intensity of the oxygen-containing functional group, which indicated the formation of a composite film. The study of the crystal structure confirmed that all of the as-prepared samples featured a monoclinic acanthite Ag2S structure with space group P21/C. It was found that the degradation rate of the methylene blue dye reached 100% within 2 h under sunlight exposure when using CF/comAg2S and 98.6% for the CF/syntAg2S photocatalyst film, and only 48.1% for the bare Ag2S powder. For the non-exposure sunlight samples, the degradation rate of only 33–35% indicated the importance of the semiconductor near-infrared (NIR) Ag2S photocatalyst used.2