Now showing 1 - 10 of 13
  • Publication
    Effect of aluminium powder on kaolin-based geopolymer characteristic and removal of Cu²⁺
    ( 2021)
    Nurliyana Ariffin
    ;
    ;
    Przemysław Postawa
    ;
    ;
    Mohd Remy Rozainy Mohd Arif Zainol
    ;
    Ramadhansyah Putra Jaya
    ;
    Agata Śliwa
    ;
    ;
    Jerzy J. Wysłocki
    ;
    Katarzyna Błoch
    ;
    Marcin Nabiałek
    This current work focuses on the synthesis of geopolymer-based adsorbent which uses kaolin as a source material, mixed with alkali solution consisting of 10 M NaOH and Na2SiO3 as well as aluminium powder as a foaming agent. The experimental range for the aluminium powder was between 0.6, 0.8, 1.0 and 1.2wt%. The structure, properties and characterization of the geopolymer were examined using X-Ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adsorption capacity and porosity were analysed based on various percentages of aluminium powder added. The results indicate that the use of aluminium powder exhibited a better pore size distribution and higher porosity, suggesting a better heavy metal removal. The maximum adsorption capacity of Cu2+ approached approximately 98%. The findings indicate that 0.8% aluminium powder was the optimal aluminium powder content for geopolymer adsorbent. The removal efficiency was affected by pH, adsorbent dosage and contact time. The optimum removal capacity of Cu2+ was obtained at pH 6 with 1.5 g geopolymer adsorbent and 4 h contact time. Therefore, it can be concluded that the increase in porosity increases the adsorption of Cu2+.
  • Publication
    Effect of Glass Reinforced Epoxy (GRE) pipe filled with geopolymer materials for piping application: compression properties
    The aim of this paper is to achieve the highest compressive strength of glass reinforced epoxy pipe with the geopolymer filler content of weight percentage that were used in glass reinforced epoxy pipe. The samples were prepared by using the filament winding method. The effect of weight percentage of geopolymer materials in epoxy hardener was studied under mechanical testing, which is using the compression test. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 – 40 weight percentage geopolymer filler which is white clay were prepared. The compression strength of the glass reinforced epoxy pipe filled geopolymer materials is determined using Instron Universal Testing under compression mode. It was found that compressive strength for samples with white clay geopolymer filler are much higher compare to glass reinforced epoxy pipe without geopolymer filler. Moreover, the compressive strength of glass reinforced epoxy pipe filled with white clay geopolymer filler was increased from 10 wt% to 30 wt% of geopolymer content. However, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler suddenly decreased when added to 40 wt%. The results indicated that the blending of geopolymer materials in epoxy system can be obtained in this study.
  • Publication
    Effect of aluminium powder on kaolin-based geopolymer characteristic and removal of Cu2+
    ( 2021)
    Nurliyana Ariffin
    ;
    ;
    Przemysław Postawa
    ;
    ;
    Mohd Remy Rozainy Mohd Arif Zainol
    ;
    Ramadhansyah Putra Jaya
    ;
    Agata Śliwa
    ;
    ;
    Jerzy J. Wysłocki
    ;
    Katarzyna Błoch
    ;
    Marcin Nabiałek
    This current work focuses on the synthesis of geopolymer-based adsorbent which uses kaolin as a source material, mixed with alkali solution consisting of 10 M NaOH and Na2SiO3 as well as aluminium powder as a foaming agent. The experimental range for the aluminium powder was between 0.6, 0.8, 1.0 and 1.2wt%. The structure, properties and characterization of the geopolymer were examined using X-Ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adsorption capacity and porosity were analysed based on various percentages of aluminium powder added. The results indicate that the use of aluminium powder exhibited a better pore size distribution and higher porosity, suggesting a better heavy metal removal. The maximum adsorption capacity of Cu2+ approached approximately 98%. The findings indicate that 0.8% aluminium powder was the optimal aluminium powder content for geopolymer adsorbent. The removal efficiency was affected by pH, adsorbent dosage and contact time. The optimum removal capacity of Cu2+ was obtained at pH 6 with 1.5 g geopolymer adsorbent and 4 h contact time. Therefore, it can be concluded that the increase in porosity increases the adsorption of Cu2+.
  • Publication
    Potential of soil stabilization using Ground Granulated Blast Furnace Slag (GGBFS) and fly ash via geopolymerization method: a review
    ( 2022)
    Syafiadi Rizki Abdila
    ;
    ; ;
    Dumitru Doru Burduhos Nergis
    ;
    ; ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    Geopolymers, or also known as alkali-activated binders, have recently emerged as a viable alternative to conventional binders (cement) for soil stabilization. Geopolymers employ alkaline activation of industrial waste to create cementitious products inside treated soils, increasing the clayey soils’ mechanical and physical qualities. This paper aims to review the utilization of fly ash and ground granulated blast furnace slag (GGBFS)-based geopolymers for soil stabilization by enhancing strength. Previous research only used one type of precursor: fly ash or GGBFS, but the strength value obtained did not meet the ASTM D 4609 (<0.8 Mpa) standard required for soil-stabilizing criteria of road construction applications. This current research focused on the combination of two types of precursors, which are fly ash and GGBFS. The findings of an unconfined compressive strength (UCS) test on stabilized soil samples were discussed. Finally, the paper concludes that GGBFS and fly-ash-based geo-polymers for soil stabilization techniques can be successfully used as a binder for soil stabilization. However, additional research is required to meet the requirement of ASTM D 4609 standard in road construction applications, particularly in subgrade layers.
  • Publication
    Influence of filler surface modification on static and dynamic mechanical responses of rice husk reinforced linear low-density polyethylene composites
    Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s–1, 0.01 s–1 and 0.1 s–1) and dynamic loading rates (650 s–1, 900 s–1 and 1100 s–1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
  • Publication
    Optimization of injection moulding process via Design Of Experiment (DOE) method based on Rice Husk (RH) Reinforced Low Density Polyethylene (LDPE) composite properties
    Optimal parameters setting of injection moulding (IM) machine critically effects productivity, quality, and cost production of end products in manufacturing industries. Previously, trial and error method were the most common method for the production engineers to meet the optimal process injection moulding parameter setting. Inappropriate injection moulding machine parameter settings can lead to poor production and quality of a product. Therefore, this study was purposefully carried out to overcome those uncertainty. This paper presents a statistical technique on the optimization of injection moulding process parameters through central composite design (CCD). In this study, an understanding of the injection moulding process and consequently its optimization is carried out by CCD based on three parameters (melt temperature, packing pressure, and cooling time) which influence the shrinkage and tensile strength of rice husk (RH) reinforced low density polyethylene (LDPE) composites. Statistical results and analysis are used to provide better interpretation of the experiment. The models are form from analysis of variance (ANOVA) method and the model passed the tests for normality and independence assumptions.
  • Publication
    Hierarchical carbon fiber-carbon nanotubes by using electrospray deposition method with preserved tensile properties
    ( 2022)
    Muhammad Razlan Zakaria
    ;
    Hazizan Md Akil
    ;
    ; ; ;
    M. Nabiałek
    ;
    J.J. Wysłocki
    In this study, the electrospray deposition (ESD) method was used to deposit carbon nanotubes (CNT) onto the surfaces of carbon fibers (CF) in order to produce hybrid carbon fiber-carbon nanotubes (CF-CNT) which is rarely reported in the past. Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS) were used to analyse the hybrid carbon fiber-carbon nanotube (CF-CNT). The results demonstrated that CNT was successfully and homogenously distributed on the CF surface. Hybrid CF-CNT was then prepared and compared with CF without CNT deposition in terms of their tensile properties. Statistically, the tensile strength and the tensile modulus of the hybrid CF-CNT were increased by up to 3% and 25%, respectively, as compared to the CF without CNT deposition. The results indicated that the ESD method did not cause any reduction of tensile properties of hybrid CF-CNT. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on CF based products
  • Publication
    Influence of filler surface modification on static and dynamic mechanical responses of rice husk reinforced linear low-density polyethylene composites
    Filler surface modification has become an essential approach to improve the compatibility problem between natural fillers and polymer matrices. However, there is limited work that concerns on this particular effect under dynamic loading conditions. Therefore, in this study, both untreated and treated low linear density polyethylene/rice husk composites were tested under static (0.001 s –1, 0.01 s –1 and 0.1 s –1) and dynamic loading rates (650 s –1, 900 s –1 and 1100 s –1) using universal testing machine and split Hopkinson pressure bar equipment, respectively. Rice husk filler was modified using silane coupling agents at four different concentrations (1, 3, 5 and 7% weight percentage of silane) at room temperature. This surface modification was experimentally proven by Fourier transform infrared and Field emission scanning electron microscopy. Results show that strength properties, stiffness properties and yield behaviour of treated composites were higher than untreated composites. Among the treated composites, the 5% silane weight percentage composite shows the optimum mechanical properties. Besides, the rate of sensitivity of both untreated and treated composites also shows great dependency on strain rate sensitivity with increasing strain rate. On the other hand, the thermal activation volume shows contrary trend. For fracture surface analysis, the results show that the treated LLDPE/RH composites experienced less permanent deformation as compared to untreated LLDPE/RH composites. Besides, at dynamic loading, the fracture surface analysis of the treated composites showed good attachment between RH and LLDPE.
  • Publication
    Insight on the structural aspect of ENR-50/TiO2 hybrid in KOH/C3H8O medium revealed by NMR spectroscopy
    ( 2020)
    Omar S. Dahham
    ;
    ;
    Mohamad Abu Bakar
    ;
    ;
    Abdulkader M. Alakrach
    ;
    ; ; ;
    Awad A. Al-rashdi
    The ring-opening reactions (ROR) of epoxide groups in epoxidized natural rubber/titania (ENR-50/TiO2) hybrid in potassium hydroxide/isopropanol medium were examined using NMR spectroscopy and supported by the FTIR technique. The thermal behaviour of the hybrid was also studied using TG/DTG and DSC analyses. The 1H NMR results suggested that 16.82% of ROR occurred in the hybrid, while the 13C NMR results exhibited five new peaks at δ 19.5, 71.0, 73.7, 91.7 and 94.4 ppm in the hybrid. 2D NMR, such as HMQC, HMBC and COSY techniques, further scrutinized these assignments. The FTIR spectrum exhibited Ti-O-C characteristics via the peak at 1028 cm−1. The TG/DTG results showed four steps of thermal degradation at 44–148, 219–309, 331–489 and 629–810 °C due to the existence of Ti moieties along with a polymer chain mixture (intact and ring-opened epoxide groups) of ENR-50, which in turn led to an increase in the Tg value of the hybrid to 27 °C compared to that of purified ENR-50 at −17.72 °C.