Home
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    New user? Click here to register. Have you forgotten your password?
Home
  • Browse Our Collections
  • Publications
  • Researchers
  • Research Data
  • Institutions
  • Statistics
    • English
    • ÄŒeÅ¡tina
    • Deutsch
    • Español
    • Français
    • Gàidhlig
    • LatvieÅ¡u
    • Magyar
    • Nederlands
    • Português
    • Português do Brasil
    • Suomi
    • Log In
      New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Resources
  3. Journals
  4. International Journal of Nanoelectronics and Materials (IJNeaM)
  5. Gold-nanoparticle associated deep eutectic solution mediates early bio detection of ovarian cancer
 
Options

Gold-nanoparticle associated deep eutectic solution mediates early bio detection of ovarian cancer

Journal
International Journal of Nanoelectronics and Materials (IJNeaM)
ISSN
1985-5761
Date Issued
2025-01
Author(s)
S. Uvambighai Devi
Universiti Malaysia Perlis
Nor Azizah Parmin
Universiti Malaysia Perlis
N. Fareezah Jaapar
Universiti Malaysia Perlis
F. Syakirah Halim
Universiti Malaysia Perlis
Uda Hashim
Universiti Malaysia Perlis
Subash Chandra Bose Gopinath
Universiti Malaysia Perlis
Muhammad Nur Aiman Uda
Universiti Malaysia Perlis
Voon Chun Hong
Universiti Malaysia Perlis
Mohammad Nuzaihan Md Nor
Universiti Malaysia Perlis
Adilah Ayoib
Universiti Malaysia Perlis
Shahidah Arina Shamsuddin
Universiti Malaysia Perlis
Norizah Abd Karim
Universiti Malaysia Perlis
DOI
10.58915/ijneam.v18i1.1685
Abstract
Gold nanoparticles (AuNPs) have indeed been extensively researched in biological and photothermal therapy applications in recent years. This study aims to enhance the sensitivity of biosensors for early detection of ovarian cancer biomarkers by investigating the efficacy of DES-mediated surface functionalization of AuNPs. Additionally, the impact of DES on the stability and dispersion of AuNPs on SiO2 support is assessed to optimize sensor performance. A simple DES-mediated synthesis method for efficient amine surface functionalization of silicon dioxide (SiO2) to incorporate tiny AuNPs for antibody biosensors. Physical characterization [Scanning Electron Microscope (SEM), Ultraviolet-Visible Spectrophotometer (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and 3D Profiler] and electrical characterization (Keithley) have been done to determine the functionalization of the modified IDE surface. SEM analysis indicated the resultant nanoparticles have truncated spherical shapes. There is just a peak recorded by UV-Vis at 504-540 nm with AuNPs due to the formation of monodispersed AuNPs. When the conjugation of DES with samples is measured, the curves are identical in form, and the highest peak after conjugation has remained at 230 nm but the SPR absorption peak becomes narrower and moves toward greater wavelengths, indicating the conjugation between the molecules. Furthermore, when the DES is conjugated with AuNPs, 3-Aminopropyltriethoxysilane (APTES), antibody, and protein, the peaks gradually increased and became narrower, where O-H at 3280 cm-1, C-H at 2809 cm-1 and 2933 cm-1, CH2 at 1448 cm-1, CH3 at 1268 cm-1, C-OH at 1048 cm-1 and 1110 cm-1 and C-N+ at 844 cm-1 as analyzed by FTIR. Moreover, it can be observed that the 3D profilometer revealed a few red-colored areas, which are the portion that protrudes from the IDE surface. Based on the findings, it is possible to infer that this immunosensor does have the prospective to be used in clinical investigations for the precise detection of ovarian cancer or other biomarkers. The capacitance, transmittance, and resistivity profiles of the biosensor clearly distinguished between the antibody immobilization and the affinity binding. The presence of a DES-mediated synthetic approach increased the possibility of supporting different metal nanoparticles on SiO2 as the potential platform for biosensor applications.
Subjects
  • Biomarker

  • Biosensor

  • Nanomaterial

  • Probe

  • Surface chemistry

File(s)
Gold-nanoparticle associated Deep Eutectic Solution mediates early bio detection of Ovarian Cancer.pdf (813.17 KB)
google-scholar
Views
Downloads
  • About Us
  • Contact Us
  • Policies