Options
Mohd. Mustafa Al Bakri Abdullah
Preferred name
Mohd. Mustafa Al Bakri Abdullah
Official Name
Abdulah, Mohd. Mustafa Al Bakri
Alternative Name
Abdullah, M.M.A.
M.M.A. Abdullah
Mustafa Al Bakri, A. M.
Albakri Abdullah, M. M.
Main Affiliation
CeGeoGTech UniMAP
Scopus Author ID
53164519100
Now showing
1 - 9 of 9
-
PublicationProperties of stone mastic asphalt incorporating nano titanium as binder's modifier( 2022)
;Nur Syafiqah Shamimi Mohd Zali ;Khairil Azman Masri ;Ramadhansyah Putra Jaya ;Muzamir Hasan ;Mohd Rosli Mohd Hasan ;Bartłomiej Jeż ;Marcin Nabiałek ;Marek SrokaPaweł PietrusiewiczStone mastic asphalt is a gap-graded mix and is usually related to its high bitumen content and its skeleton-like constitution. Although famous for its durability, high resistance to fatigue and rutting, issues such as bleeding and premature aging do occur in the mix since it has a high bitumen content and voids due to its gap-graded structure. In order to encounter these problems from affecting the mix, some instances such as adding additives, rejuvenators and stabilizers into the mixture has been implemented. Nowadays, nano materials are being used in the asphalt mixtures and nano titanium is being introduced as a modifier to the asphalt binder in order to improve the mechanical properties of the stone mastic asphalt mix. The related tests done in order to access the improvement are resilient modulus, dynamic creep, moisture susceptibility and binder drain down. The content of nano titanium used in this research are 1%, 2%, 3%, 4% and 5%. This study is done to assess the mechanical performance of stone mastic asphalt with nano titanium modified binder. -
PublicationMicrostructure evolution of Ag/TiO2 thin film( 2021)
;Mohd Izrul Izwan Ramli ;Kazuhiro Nogita ;Hideyuki Yasuda ;Marcin NabiałekJerzy J. WysłockiAg/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively. -
PublicationEffect of NaOH molar concentration on microstructure and compressive strength of Dolomite/Fly Ash-Based geopolymers( 2021)
;Emy Aizat Azimi ;M.A.A. Mohd Salleh ;Ikmal Hakem A. Aziz ;Jitrin Chaiprapa ;Petrica Vizureanu ;Sorachon Yoriya ;Marcin NabiałekJerzy J. WyslockiDolomite can be used as a source of aluminosilicate to produce geopolymers; however, this approach is limited by its low reactivity. This study analyzes the viability of producing geopolymers using dolomite/fly-ash with sodium silicate and NaOH solutions (at multiple concentrations) by determining the resultant geopolymers’ compressive strengths. The dolomite/fly-ash-based geopolymers at a NaOH concentration of ~22 M resulted in an optimum compressive strength of 46.38 MPa after being cured for 28 days, and the SEM and FTIR analyses confirmed the denser surface of the geopolymer matrix. The synchrotron micro-XRF analyses confirmed that the Ca concentration exceeded that of Si and Mg, leading to the formation of calcium silicate hydrate, which strengthens the resulting geopolymers. -
PublicationAssessment of the suitability of ceramic waste in geopolymer composites: an appraisal( 2021)
;Ismail Luhar ;Salmabanu Luhar ;Marcin Nabiałek ;Andrei Victor Sandu ;Janusz Szmidla ;Anna Jurczyńska ;Rafiza Abdul Razak ;Ikmal Hakem A AzizLaila Mardiah DeramanCurrently, novel inorganic alumino-silicate materials, known as geopolymer composites, have emerged swiftly as an ecobenevolent alternative to contemporary ordinary Portland cement (OPC) building materials since they display superior physical and chemical attributes with a diverse range of possible potential applications. The said innovative geopolymer technology necessitates less energy and low carbon footprints as compared to OPC-based materials because of the incorporation of wastes and/or industrial byproducts as binders replacing OPC. The key constituents of ceramic are silica and alumina and, hence, have the potential to be employed as an aggregate to manufacture ceramic geopolymer concrete. The present manuscript presents a review of the performance of geopolymer composites incorporated with ceramic waste, concerning workability, strength, durability, and elevated resistance evaluation. -
PublicationModern materials – obtaining and characterization (alloys, polymers)( 2021)
;Bogusław Major ;Andrei Victor Sandu ;Marcin Nabiałek ;Tomasz TańskiAdam Zieliński -
PublicationThe effect of particle size on the mechanical properties of Alkali Activated Steel Slag Mortar( 2022)
;Doh Shu Ing ;Ho Chia Min ;Xiaofeng Li ;Ramadhansyah Putra Jaya ;Siew Choo Chin ;Nur Liza RahimMarcin NabiałekWith the rapid development of industry, abundant industrial waste has resulted in escalating environmental issue. Steel slag is the by-product of steel-making and can be used as cementitious materials in construction. However, the low activity of steel slag limits its utilization. Much investigation has been conducted on steel slag, while only a fraction of the investigation focuses on the effect of steel slag particle size on the properties of mortar. The aim of this study is to investigate the effect of steel slag particle size as cement replacement on properties of steel slag mortar activated by sodium sulphate (Na 2 SO 4). In this study, two types of steel slag, classified as fine steel slag (FSS) with particle sizes of 0.075mm and coarse steel slag (CSS) with particle sizes of 0.150 mm, were used for making alkali activated steel slag (AASS) mortar. Flow table test, compressive strength test, flexural strength test and UPV test were carried out by designing and producing AASS mortar cubes of (50 × 50 × 50) mm at 0, 10%, 20% and 30% replacement ratio and at 0.85% addition of Na 2 SO 4. The results show that the AASS mortar with FSS possess a relatively good strength in AASS mortar. AASS mortar with FSS which is relatively finer shows a higher compressive strength than CSS up to 38.0% with replacement 52 DOH SHU ING et al. ratio from 10% to 30%. This study provided the further investigation on the combined influence of replacement ratio and particle size of SS in the properties of fresh and hardened AASS. -
PublicationWarpage optimisation using Recycled Polycar-bonates (PC) on Front Panel Housing( 2021)
;Nur Aisyah Miza Ahmad Tamizi ;Abdellah El-hadj Abdellah ;Marcin Nabiałek ;Jerzy J. Wysłocki ;Bartłomiej Jeż ;Paweł Palutkiewicz ;Rozyanty Abdul RahmanMany studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study.2 8 -
PublicationThe effect of thermal annealing on the microstructure and mechanical properties of Sn-0.7Cu-xZn solder joint( 2021)
;Mohd Izrul Izwan RamliMarcin NabiałekThe microstructural properties of a Pb-free solder joint significantly affect its mechanical behaviours. This paper details a systematic study of the effect of the annealing process on the microstructure and shear strength of a Zn-added Sn-0.7Cu solder joint. The results indicated that the IMC layer’s thickness at the solder/Cu interface increases with annealing time. The interfacial IMC layer of the Sn-0.7Cu solder joint gradually thickened with increasing annealing time and annealing temperature, while the interfacial IMC layer’s morphology changed from scallop-type to layer-type after the annealing process. However, the addition of 1.0 wt.% and 1.5 wt.% Zn in the Sn-0.7Cu effectively altered the interfacial IMC phase to Cu-Zn and suppressed the growth of Cu3Sn during the annealing process. The single-lap shear tests results confirmed that the addition of Zn decreased the shear strength of Sn-0.7Cu. The interfacial IMC of the Cu6Sn5 phase in Sn-0.7Cu changed to Cu-Zn due to the addition of Zn. The shear fractures in the annealed solder joint were ductile within the bulk solder instead of the interfacial IMC layer. Increased annealing time resulted in the increased presence of the Cu-Zn phase, which decreased the hardness and shear strength of the Sn-0.7Cu solder joint.2 19 -
PublicationRole of sintering temperature in production of nepheline Ceramics-Based geopolymer with addition of ultra-high molecular weight polyethylene( 2021)
;Fakhryna Hannanee Ahmad Zaidi ;Jitrin Chaiprapa ;Jerzy J. Wysłocki ;Katarzyna BłochMarcin NabiałekThe primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.8 10