Options
Mohd. Mustafa Al Bakri Abdullah
Preferred name
Mohd. Mustafa Al Bakri Abdullah
Official Name
Abdulah, Mohd. Mustafa Al Bakri
Alternative Name
Abdullah, M.M.A.
M.M.A. Abdullah
Mustafa Al Bakri, A. M.
Albakri Abdullah, M. M.
Main Affiliation
CeGeoGTech UniMAP
Scopus Author ID
53164519100
Now showing
1 - 10 of 23
-
PublicationNonisothermal kinetic degradation of Hybrid CNT/Alumina Epoxy Nanocomposites( 2021)
;Muhammad Helmi Abdul Kudus ;Muhammad Razlan Zakaria ;Muhammad Bisyrul Hafi Othman ;Hazizan Md. Akil ;Marcin Nabiałek ;Bartłomiej JeżDue to the synergistic effect that occurs between CNTs and alumina, CNT/alumina hybrid-filled epoxy nanocomposites show significant enhancements in tensile properties, flexural properties, and thermal conductivity. This study is an extension of previously reported investigations into CNT/alumina epoxy nanocomposites. A series of epoxy composites with different CNT/alumina loadings were investigated with regard to their thermal-degradation kinetics and lifetime prediction. The thermal-degradation parameters were acquired via thermogravimetric analysis (TGA) in a nitrogen atmosphere. The degradation activation energy was determined using the Flynn–Wall–Ozawa (F-W-O) method for the chosen apparent activation energy. The Ea showed significant differences at α > 0.6, which indicate the role played by the CNT/alumina hybrid filler loading in the degradation behavior. From the calculations, the lifetime prediction at 5% mass loss decreased with an increase in the temperature service of nitrogen. The increase in the CNT/alumina hybrid loading revealed its contribution towards thermal degradation and stability. On average, a higher Ea was attributed to greater loadings of the CNT/alumina hybrid in the composites. -
PublicationPhase transformation of Kaolin-Ground Granulated Blast Furnace Slag from geopolymerization to sintering process( 2021)
;Mohamad Hasmaliza ;Ikmal Hakem A. Aziz ;Bartłomiej JeżMarcin NabiałekThe main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures. -
PublicationEffect of Rice Straw Ash (RSA) as partially replacement of cement toward fire resistance of self-compacting concrete( 2022)
;Yi Qin Chin ;Sebastian Garus ;Marcin Nabiałek ;Warid Wazien Ahmad Zailani ;Khairil Azman Masri ;Andrei Victor SanduAgata ŚliwaMalaysia’s construction industry is experiencing rapid growth, translating into increased demand for cement. However, cement production pollutes the air to the detriment of the climate via CO2 emission, making research into a cementitious replacement in concrete a necessity. This paper details an experimental study of self-compacting concrete (SCC) with partial replacement of cement by rice straw ash (RSA), which is expected to result in environmental preservation due to the green materials being used in cement production. The physicomechanical properties of the SCC with RSA replacement were determined via its compressive strength, water absorption, self-workability, and fire resistance (residual strength after exposure to high temperatures). The proportion of RSA replacement used were 0%, 5%, 10%, 15%, 20%, and 25%, and all passed the slump flow test, except the 20% and 25% samples. The SCC samples with 15% of RSA replacement reported the highest compressive strength at 7 and 28 curing days and the highest residual strength post-exposure to high temperatures. The lowest percentage of water absorption was reported by the 15% of RSA replacement, with a density of 2370 kg/m3 -
PublicationContribution of interfacial bonding towards geopolymers properties in geopolymers reinforced fibers: a review( 2022)
;Muhd Hafizuddin Yazid ;Marcin Nabiałek ;Marwan Kheimi ;Andrei Victor Sandu ;Adam RylskiBartłomiej JeżThere is a burgeoning interest in the development of geopolymers as sustainable construction materials and incombustible inorganic polymers. However, geopolymers show quasi-brittle behavior. To overcome this weakness, hundreds of researchers have focused on the development, characterization, and implementation of geopolymer-reinforced fibers for a wide range of applications for light geopolymers concrete. This paper discusses the rapidly developing geopolymer-reinforced fibers, focusing on material and geometrical properties, numerical simulation, and the effect of fibers on the geopolymers. In the section on the effect of fibers on the geopolymers, a comparison between single and hybrid fibers will show the compressive strength and toughness of each type of fiber. It is proposed that interfacial bonding between matrix and fibers is important to obtain better results, and interfacial bonding between matrix and fiber depends on the type of material surface contact area, such as being hydrophobic or hydrophilic, as well as the softness or roughness of the surface. -
PublicationCompressive strength and durability of foamed concrete incorporating processed spent bleaching earth( 2022)
;Rokiah Othman ;Khairunisa Muthusamy ;Mohd Arif Sulaiman ;Youventharan Duraisamy ;Ramadhansyah Putra Jaya ;Chong Beng Wei ;Sajjad Ali Mangi ;Marcin NabiałekAgata ŚliwaFoamed concrete incorporating processed spent bleaching earth (PSBE) produces environmentally friendly foamed concrete. Compressive strength, porosity, and rapid chloride penetration tests were performed to investigate the potential application for building material due to its low density and porous concrete. Laboratory results show that 30% PSBE as cement replacement in foamed concrete produced higher compressive strength. Meanwhile, the porosity of the specimen produced by 30% PSBE was 45% lower than control foamed concrete. The porosity of foamed concrete incorporating PSBE decreases due to the fineness of PSBE that reduces the volume of void space between cement and fine aggregate. It was effectively blocking the pore and enhances the durability. Consistently, the0001-9459-3895 628 R. OTHMAN et al. positive effect of incorporating of PSBE has decreased the rapid chloride ion permeability compared to that control foamed concrete. According to ASTM C1202-19 the foamed concrete containing 30% PSBE was considered low moderate permeability based on its charge coulombs value of less than 4000. Besides, the high chloride ion permeability in foamed concrete is because the current quickly passes through the specimen due to its larger air volume. In conclusion, incorporating PSBE in foamed concrete generates an excellent pozzolanic effect, producing more calcium silicate hydrate and denser foamed concrete, making it greater, fewer voids, and higher resistance to chloride penetration. -
PublicationOptimisation of shrinkage and strength on thick plate part using recycled LDPE materials( 2021)
;Norshahira Roslan ;Abdellah El-hadj Abdellah ;Katarzyna Błoch ;Paweł Pietrusiewicz ;Marcin Nabiałek ;Janusz Szmidla ;Dariusz Kwiatkowski ;Joel Oliveira Correia VascoAchieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%. -
PublicationWarpage optimisation using recycled Polycar-bonates (PC) on front panel housing( 2021)
;Nur Aisyah Miza Ahmad Tamizi ;Abdellah El-hadj Abdellah ;Marcin Nabiałek ;Jerzy J. Wysłocki ;Bartłomiej Jeż ;Paweł Palutkiewicz ;Rozyanty Abdul RahmanMany studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study. -
PublicationDesign of experiment on concrete mechanical properties prediction: A critical review( 2021)
;Beng Wei Chong ;Rokiah Othman ;Ramadhansyah Putra Jaya ;Mohd Rosli Mohd Hasan ;Andrei Victor Sandu ;Marcin Nabiałek ;Bartłomiej Jeż ;Paweł Pietrusiewicz ;Dariusz Kwiatkowski ;Przemysław PostawaConcrete mix design and the determination of concrete performance are not merely engineering studies, but also mathematical and statistical endeavors. The study of concrete mechanical properties involves a myriad of factors, including, but not limited to, the amount of each constituent material and its proportion, the type and dosage of chemical additives, and the inclusion of different waste materials. The number of factors and combinations make it difficult, or outright impossible, to formulate an expression of concrete performance through sheer experimentation. Hence, design of experiment has become a part of studies, involving concrete with material addition or replacement. This paper reviewed common design of experimental methods, implemented by past studies, which looked into the analysis of concrete performance. Several analysis methods were employed to optimize data collection and data analysis, such as analysis of variance (ANOVA), regression, Taguchi method, Response Surface Methodology, and Artificial Neural Network. It can be concluded that the use of statistical analysis is helpful for concrete material research, and all the reviewed designs of experimental methods are helpful in simplifying the work and saving time, while providing accurate prediction of concrete mechanical performance. -
PublicationWarpage optimisation on the moulded part with straight drilled and conformal cooling channels using Response Surface Methodology (RSM), Glowworm Swarm Optimisation (GSO) and Genetic Algorithm (GA) optimisation approaches( 2021)
;Joanna Gondro ;Safian Sharif ;Azlan Mohd Zain ;Abdellah El-hadj Abdellah ;Jerzy J. WysłockiMarcin NabiałekIt is quite challenging to control both quality and productivity of products produced using injection molding process. Although many previous researchers have used different types of optimisation approaches to obtain the best configuration of parameters setting to control the quality of the molded part, optimisation approaches in maximising the performance of cooling channels to enhance the process productivity by decreasing the mould cycle time remain lacking. In this study, optimisation approaches namely Response Surface Methodology (RSM), Genetic Algorithm (GA) and Glowworm Swarm Optimisation (GSO) were employed on front panel housing moulded using Acrylonitrile Butadiene Styrene (ABS). Each optimisation method was analysed for both straight drilled and Milled Groove Square Shape (MGSS) conformal cooling channel moulds. Results from experimental works showed that, the performance of MGSS conformal cooling channels could be enhanced by employing the optimisation approach. Therefore, this research provides useful scientific knowledge and an alternative solution for the plastic injection moulding industry to improve the quality of moulded parts in terms of deformation using the proposed optimisation approaches in the used of conformal cooling channels mould. -
PublicationEvaluation on the mechanical properties of Ground Granulated Blast Slag (GGBS) and fly ash stabilized soil via geopolymer process( 2021)
;Syafiadi Rizki Abdila ;Małgorzata Rychta ;Izabela Wnuk ;Marcin Nabiałek ;Krzysztof Muskalski ;Muhammad SyafwandiMarek IsradiThis study intended to address the problem of damaged (collapsed, cracked and decreased soil strength) road pavement structure built on clay soil due to clay soil properties such as low shear strength, high soil compressibility, low soil permeability, low soil strength, and high soil plasticity. Previous research reported that ground granulated blast slag (GGBS) and fly ash can be used for clay soil stabilizations, but the results of past research indicate that the road pavement construction standards remained unfulfilled, especially in terms of clay’s subgrade soil. Due to this reason, this study is carried out to further investigate soil stabilization using GGBS and fly ash-based geopolymer processes. This study investigates the effects of GGBS and ratios of fly ash (solid) to alkaline activator (liquid) of 1:1, 1.5:1, 2:1, 2.5:1, and 3:1, cured for 1 and 7 days. The molarity of sodium hydroxide (NaOH) and the ratio of sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) was fixed at 10 molar and 2.0 weight ratio. The mechanical properties of the soil stabilization based geopolymer process were tested using an unconfined compression test, while the characterization of soil stabilization was investigated using the plastic limit test, liquid limit test, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results showed that the highest strength obtained was 3.15 MPA with a GGBS to alkaline activator ratio of 1.5 and Na2SiO3 to NaOH ratio of 2.0 at 7 days curing time. These findings are useful in enhancing knowledge in the field of soil stabilization-based geopolymer, especially for applications in pavement construction. In addition, it can be used as a reference for academicians, civil engineers, and geotechnical engineers.
- «
- 1 (current)
- 2
- 3
- »