Now showing 1 - 10 of 11
  • Publication
    Phase transformation of Kaolin-Ground Granulated Blast Furnace Slag from geopolymerization to sintering process
    ( 2021) ; ; ;
    Mohamad Hasmaliza
    ;
    ;
    Ikmal Hakem A. Aziz
    ;
    Bartłomiej Jeż
    ;
    Marcin Nabiałek
    The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80 °C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60 °C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.
  • Publication
    The effect of cuznfe2o4 on mechanical properties and thermal conductivity of abs manufactured using 3d printer
    ( 2020-01-01)
    Hamzah K.A.
    ;
    Yeoh C.K.
    ;
    ; ;
    Sazali S.A.
    ;
    The aim of this study is the development of the ABS-CuZnFe2O4 composites using 3D printer. In this study, the effect of filler loading on the mechanical properties and thermal conductivity is examined. The result shows that at highest filler loading (14 wt%) the tensile strength was improved approximately 98% while the Young’s modulus increased about 23% compared to unfilled specimen. Meanwhile, the percentage of elongation decrease approximately about 49% when filled with 14 wt% of filler. The CuZnFe2O4 filler shows a greater effect on hardness value of the composites around 498% at maximum filler content. The thermal conductivity of the ABS increased up to 60% at full capacity of filler.
  • Publication
    Mechanical properties and thermal and electrical conductivity of 3D printed ABS-copper ferrite composites via 3D printing technique
    ( 2022-01-01)
    Hamzah K.A.
    ;
    Yeoh C.K.
    ;
    ; ;
    Aw Y.Y.
    ;
    Sazali S.A.
    ;
    This study examines the effect of particulate reinforcement on the mechanical properties of 3D printed acrylonitrile–butadiene–styrene (ABS). Copper ferrite (CuFe2O4) as a reinforcer with various loadings was used to print ABS composite specimen, namely, 8, 11 and 14 wt%. Mechanical testing such as tensile test and hardness test was performed on the printed samples. Specimens with 14 wt% of CuFe2O4 showed a 135% increase in tensile strength compared to the pure ABS specimens. Specimens printed with 14 wt% of CuFe2O4 are 14% harder compared to the pure ABS specimens. Thermal conductivity increased 93% for specimen loaded with 14 wt% reinforcer. Electrical conductivity shows a one-order increase for composite specimen compared to control specimen.
  • Publication
    Influences of SiO2, Al2O3, CaO and MgO in phase transformation of sintered kaolin-ground granulated blast furnace slag geopolymer
    ( 2020-01-01)
    Jamil N.H.
    ;
    ; ;
    Mohamad H.
    ;
    ;
    Chaiprapa J.
    Kaolin has an excellent structure formed via a wide range of firing temperature. The correlation between the mineralogy and reactivity of individual elements is extremely complex in a sintered geopolymer material. The main objective of this work is to elucidate the influence of the chemical composition of the raw materials used post-sintering on the kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The samples were cured at room temperature for 5 days before being sintered. The ratio of solid-to-liquid were 1:1, 1.5:1, and 2:1. The addition of the GGBS to the kaolin geopolymer slurry did not only hasten the hardening process during geopolymerization, the presence of SiO2, Al2O3, CaO, and MgO in GGBS had accelerated the formation of nepheline, gehlenite, akermanite, and albite phase after sintering based on the result from x-ray diffraction and fourier-transform infrared spectroscopy On top of the phase transformation, a high ratio of solid-to-liquid (SL 2) had improved the pore distribution from irregular size to well defined formation and increased the densification of the sintered materials. Elemental distribution from micro-XRF investigation prove the high concentration of Ca in localized area and uniformly distribution of Si aligned with the phase of akermanite in SL 2. The main chemical composition of kaolin and GGBS which are SiO2, Al2O3, CaO and MgO had contributed in phase transformation of sintered kaolin-GGBS geopolymer.
  • Publication
    Effect of different process parameters on the heat transfer of liquid coolant in electronic system
    An effective heat transfer system is important for new technologies today to enhance the performance of heat transfer, especially, since the miniaturization of electronic system that resulted in dramatic increase in the amount of heat generated. In the case, where air cooling could not meet requirements, liquid cooling does offer significant cooling advantages over conventional air cooling because of its better thermal transfer property. But unsuitable selection of liquid coolants may result to low performance or problems to the cooling systems. This study investigates the effect of different process parameters on the heat transfer of the liquid cooling. Experimental investigations have been carried out for determining the cooling performance of distilled water, vegetable oil and alumina sols in cooling system of central processing units (CPU) at different parameters of input power and mass flow rate. Optimising the pH values is very crucial because it will determine the stability of alumina sols, an optimal pH value of pH 4 is obtained for the alumina sols. There is no significant effect to the viscosity of the alumina sols because of low concentrations of alumina particles are dispersed in base fluids. Input power is direct influence to the final temperatures of CPU block and fluids. The heat transfer coefficient of the fluids is improved and a clear decrease of the junction temperature between the heated component and the water cooling block due to the higher mass flow rate. Alumina sols show better heat removal capability and higher heat transfer coefficient than distilled water and vegetable oil due to the presence of alumina particles in the fluids. Experimental results emphasize the higher molarity of alumina sols contributes higher heat transfer coefficient. The heat removal capability of 0.1 M, 0.5 M and 1.0 M alumina sols have been found as much as 15.4 %, 32.3 % and 40.8 % higher than distilled water. This study recommend that a stable 1.0M alumina sol may be use as liquid coolant for CPU cooling system as well as in component test handlers in semiconductor industry.
      1  18
  • Publication
    Alkaline-Activation technique to produce low-temperature sintering activated-HAp ceramic
    ( 2023) ; ; ;
    Hasmaliza Mohamad
    ;
    ;
    Andrei Victor Sandu
    ;
    Petrica Vizureanu
    ;
    Madalina Simona Baltatu
    ;
    Patimapon Sukmak
    The fabrication of hydroxyapatite (HAp) ceramics prepared by existing conventional sintering requires high-temperature sintering of 1250 °C to 1300 °C. In this paper, the activated metakaolin (MK)/HAp specimens were prepared from varied mix design inputs, which were varied solid mixtures (different amounts of MK loading in HAp) and liquid-to-solid (L/S) ratios, before being pressed and sintered at 900 °C. Phase analysis, thermal analysis, surface morphology, and tensile strength of the specimens were investigated to study the influences of the Al, Si, Fe, Na, and K composition on the formation of the hydroxyapatite phase and its tensile strength. XRD analysis results show the formation of different phases was obtained from the different mix design inputs HAp (hexagonal and monoclinic), calcium phosphate, sodium calcium phosphate silicate and calcium hydrogen phosphate hydrate. Interestingly, the specimen with the addition of 30 g MK prepared at a 1.25 L/S ratio showed the formation of a monoclinic hydroxyapatite phase, resulting in the highest diametrical tensile strength of 12.52 MPa. Moreover, the increment in the MK amount in the specimens promotes better densification when sintered at 900 °C, which was highlighted in the microstructure study. This may be attributed to the Fe2O3, Na2O, and K2O contents in the MK and alkaline activator, which acted as a self-fluxing agent and contributed to the lower sintering temperature. Therefore, the research revealed that the addition of MK in the activated-HAp system could achieve a stable hydroxyapatite phase and better tensile strength at a low sintering temperature.
      3  10
  • Publication
    Alkaline-Activation Technique to Produce Low-Temperature Sintering Activated-HAp Ceramic
    ( 2023-02-01) ; ;
    Jamil N.H.
    ;
    Mohamad H.
    ;
    ;
    Sandu A.V.
    ;
    Vizureanu P.
    ;
    Baltatu M.S.
    ;
    Sukmak P.
    The fabrication of hydroxyapatite (HAp) ceramics prepared by existing conventional sintering requires high-temperature sintering of 1250 °C to 1300 °C. In this paper, the activated metakaolin (MK)/HAp specimens were prepared from varied mix design inputs, which were varied solid mixtures (different amounts of MK loading in HAp) and liquid-to-solid (L/S) ratios, before being pressed and sintered at 900 °C. Phase analysis, thermal analysis, surface morphology, and tensile strength of the specimens were investigated to study the influences of the Al, Si, Fe, Na, and K composition on the formation of the hydroxyapatite phase and its tensile strength. XRD analysis results show the formation of different phases was obtained from the different mix design inputs HAp (hexagonal and monoclinic), calcium phosphate, sodium calcium phosphate silicate and calcium hydrogen phosphate hydrate. Interestingly, the specimen with the addition of 30 g MK prepared at a 1.25 L/S ratio showed the formation of a monoclinic hydroxyapatite phase, resulting in the highest diametrical tensile strength of 12.52 MPa. Moreover, the increment in the MK amount in the specimens promotes better densification when sintered at 900 °C, which was highlighted in the microstructure study. This may be attributed to the Fe2O3, Na2O, and K2O contents in the MK and alkaline activator, which acted as a self-fluxing agent and contributed to the lower sintering temperature. Therefore, the research revealed that the addition of MK in the activated-HAp system could achieve a stable hydroxyapatite phase and better tensile strength at a low sintering temperature.
      2
  • Publication
    Phase transformation of Kaolin-ground granulated blast furnace slag from geopolymerization to sintering process
    ( 2021-03-01) ; ; ;
    Hasmaliza M.
    ;
    ;
    Aziz I.H.A.
    ;
    Jeż B.
    ;
    Nabiałek M.
    The main objective of this research was to investigate the influence of curing temperature on the phase transformation, mechanical properties, and microstructure of the as-cured and sintered kaolin-ground granulated blast furnace slag (GGBS) geopolymer. The curing temperature was varied, giving four different conditions; namely: Room temperature, 40, 60, and 80◦ C. The kaolin-GGBS geopolymer was prepared, with a mixture of NaOH (8 M) and sodium silicate. The samples were cured for 14 days and sintered afterwards using the same sintering profile for all of the samples. The sintered kaolin-GGBS geopolymer that underwent the curing process at the temperature of 60◦ C featured the highest strength value: 8.90 MPa, and a densified microstructure, compared with the other samples. The contribution of the Na2 O in the geopolymerization process was as a self-fluxing agent for the production of the geopolymer ceramic at low temperatures.
      2
  • Publication
    Self-Fluxing mechanism in geopolymerization for Low-Sintering temperature of ceramic
    ( 2021) ; ; ;
    Hasmaliza Mohamad
    ;
    ;
    Penphitcha Amonpattaratkit
    ;
    Joanna Gondro
    ;
    Wojciech Sochacki
    ;
    Norfadhilah Ibrahim
    Kaolin, theoretically known as having low reactivity during geopolymerization, was used as a source of aluminosilicate materials in this study. Due to this concern, it is challenging to directly produce kaolin geopolymers without pre-treatment. The addition of ground granulated blast furnace slag (GGBS) accelerated the geopolymerization process. Kaolin–GGBS geopolymer ceramic was prepared at a low sintering temperature due to the reaction of the chemical composition during the initial stage of geopolymerization. The objective of this work was to study the influence of the chemical composition towards sintering temperature of sintered kaolin–GGBS geopolymer. Kaolin–GGBS geopolymer was prepared with a ratio of solid to liquid 2:1 and cured at 60 °C for 14 days. The cured geopolymer was sintered at different temperatures: 800, 900, 1000, and 1100 °C. Sintering at 900 °C resulted in the highest compressive strength due to the formation of densified microstructure, while higher sintering temperature led to the formation of interconnected pores. The difference in the X-ray absorption near edge structure (XANES) spectra was related to the phases obtained from the X-ray diffraction analysis, such as akermanite and anothite. Thermal analysis indicated the stability of sintered kaolin–GGBS geopolymer when exposed to 1100 °C, proving that kaolin can be directly used without heat treatment in geopolymers. The geopolymerization process facilitates the stability of cured samples when directly sintered, as well as plays a significant role as a self-fluxing agent to reduce the sintering temperature when producing sintered kaolin–GGBS geopolymers.
      2  7