Now showing 1 - 5 of 5
  • Publication
    Mesoporous Structure of Doped and Undoped PEG on Ag/TiO2 Thin Film
    In this reaserch, photocatalyst silver titanium dioxide was doped and modified by Polyethylene Glycol (PEG). The purpose of the present study was to analyse the synthesized Ag/TiO2 thin film doped and undoped PEG. Ag/TiO2 thin films on silicon wafer have been prepared by sol-gel spin coating. The samples were characterized by Grazing Incidence X-ray diffraction (GIXRD), Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscope (AFM). The doped and undoped PEG Ag/TiO2 thin films showed a mesoporous TiO2 matrix which includes TiO2 crystallites of 10-20 nm in size and small Ag nanoparticles (white spots) with various sizes ranging from 10 to 30 nm. However, doped PEG Ag/TiO2 thin film showed the Ag nanoparticles became agglomerates but still remained roughly uniform on the surface.
  • Publication
    Interdigitated electrodes as impedance and capacitance biosensors: A review
    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.
  • Publication
    Surface Modification of GO/TiO2 Thin Film by Sodium Dodecyl Sulphate for Photocatalytic Applications
    Photocatalyst material titanium dioxide (TiO2) and graphene oxide (GO) were used to improve the self-cleaning properties of thin films. The sol–gel spin-coating method was successfully used to synthesize GO/TiO2 thin films. Surface modification was applied to optimize the self-cleaning capabilities by adding several concentrations of sodium dodecyl sulfate (SDS) (0.1 w/v%, 0.2 w/v%, 0.3 w/v%, 0.4 w/v%, and 0.5 w/v%) to the parent solution. The synthesized thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, UV-visible spectroscopy, water contact angle analysis, and photocatalytic analysis. The AFM and SEM images revealed that as the SDS amount increased, the particles became less agglomerated, and the roughness of the surface reduced from 2.54 × 102 nm to 0.83 × 102 nm. The wettability analysis showed that when SDS increased to 0.4 w/v%, the water contact angle dropped to 15.30°, implying that the thin film exhibits hydrophilic qualities. A decrease in the GO/TiO2 band gap was obtained linearly with the increase in SDS addition from 3.17 eV to 2.75 eV. Finally, the improvement of the surface coating and reduction of the band gap enhanced the photocatalytic activity, which degraded 78.97% of methylene blue, which was obtained by 0.4SDS.
      2
  • Publication
    Synthesis of Zn/TiO2 Thin Films for Self-Cleaning Applications
    ( 2022-07-01) ;
    Abidin A.S.Z.
    ;
    Azani A.
    ;
    ; ; ; ;
    Sandu A.V.
    ;
    Vizureanu P.
    ;
    Kaczmarek L.
    ;
    Garus S.
    ;
    Garus J.
    Titanium dioxide (TiO2) thin film has been widely used in semiconductor applications. The surface modification on TiO2 has been done by adding zinc (Zn) in order to improve surface wettability and enhance the photocatalysis efficiency for solar cell applications. Self-cleaning technology is very important to sustain the efficiency of the solar cell and reduce the cost of the maintenance of the solar cell. In this work, the sol–gel method was used due to the economic factor and its best efficiency. The sol–gel method is a wet chemical technique involving several steps, such as hydrolysis and polycondensation, gelation, aging, drying, densification, and crystallization. The X-Ray diffraction pattern shows that anatase and rutile phases were detected at 2θ = 36.3864◦. It was clearly seen at 4% Zn-doped TiO2 annealed at 400◦C that due to the increment of Zn concentration, the phase transformed from the anatase phase to the rutile phase at high temperature. The scanning electron microscope micrograph shows that Zn concentration affects grain size. The water contact angle produced when 4% Zn-doped TiO2 was annealed at 300◦C, was 18◦ — higher than in the sample of 4% Zn-doped TiO2 annealed at 400◦C. These results clearly showed that the dopant concentration and the annealing temperature influence the properties of TiO2 for a self-cleaning application.
      2
  • Publication
    Effect of polyethylene glycol and sodium dodecyl sulphate on microstructure and self-cleaning properties of graphene oxide/TiO2 thin film
    In this study, a sol gel procedure for preparation of TiO2 thin films with graphene oxide (GO) was developed. The effect of PEG and SDS addition on the microstructure of the films as well as the photocatalytic activity of the thin film was also investigated. The morphology and surface structure of the films were studied by SEM and AFM while the photocatalytic activity of the films was analyzed by measuring the degradation of methylene blue under sunlight irradiation using UV-Vis spectrophotometer. It was found that GO/TiO2 thin film with PEG shows a smaller and porous particle while GO/TiO2 thin film with SDS formed a very smooth surface and very fine particles. Therefore, in AFM analysis reveals that surface roughness decreases with the addition of PEG and SDS. Finally, the photocatalytic activity showed that GO/TiO2 thin film with SDS have the most effective self-cleaning property which degrade 64% of methylene blue that act as model of contaminants.
      1