Now showing 1 - 3 of 3
  • Publication
    Interaction of geopolymer filler and alkali molarity concentration towards the fire properties of glass-reinforced epoxy composites fabricated using filament winding technique
    This paper aims to find out the effect of different weight percentages of geopolymer filler in glass-reinforced epoxy pipe, and which can achieve the best mechanical properties and adhesion between high calcium pozzolanic-based geopolymer matrices. Different weight percentages and molarities of epoxy hardener resin and high calcium pozzolanic-based geopolymer were injected into the glass fiber. By manually winding filaments, composite samples were produced, and they were then allowed to cure at room temperature. To determine how well the geopolymer matrices adhere to the fiber reinforcement, the microstructure of the composites’ surfaces and perpendicular sections were examined. Maximum values of compressive strength and compressive modulus were 94.64 MPa and 2373.58 MPa, respectively, for the sample with a weight percentage of filler loading of 30 wt% for an alkali concentration of 12 M. This is a relatively wide range of geopolymer weight percentage of filler loading from 10 wt% to 40 wt%, at which we can obtain high compressive properties. By referring to microstructural analysis, adhesion, and interaction of the geopolymer matrix to glass fiber, it shows that the filler is well-dispersed and embedded at the fiber glass, and it was difficult to determine the differences within the range of optimal geopolymer filler content. By determining the optimum weight percent of 30 wt% of geopolymer filler and microstructural analysis, the maximum parameter has been achieved via analysis of high calcium pozzolanic-based geopolymer filler. Fire or elevated temperature represents one of the extreme ambient conditions that any structure may be exposed to during its service life. The heat resistance or thermal analysis between glass-reinforced epoxy (GRE) pipe and glass-reinforced epoxy pipe filled with high calcium pozzolanic-based geopolymer filler was studied by investigating burning tests on the samples, which shows that the addition of high calcium pozzolanic-based geopolymer filler results in a significant reduction of the melted epoxy.
  • Publication
    Fly ash porous material using geopolymerization process for high temperature exposure
    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.
  • Publication
    Diverse material based geopolymer towards heavy metals removal: a review
    ( 2023)
    Pilomeena Arokiasamy
    ;
    ; ;
    Monower Sadique
    ;
    ; ;
    Mohd Remy Rozainy Mohd Arif Zainol
    ;
    Metakaolin is a commonly used aluminosilicate material for the synthesis of geopolymer based adsorbent. However, it presents characteristics that restrict its uses such as weak rheological properties brought on by the plate-like structure, processing challenges, high water demand and quick hydration reaction. Industrial waste, on the other hand, contains a variety of components and is a potential source of aluminosilicate material. Geopolymer adsorbent synthesized by utilizing industrial waste contains a wide range of elements that offer better ion-exchangeability and increase active sites on the surface of geopolymer. However, limited studies focused on the synthesized of geopolymer based adsorbent by utilizing industrial waste for heavy metal adsorption in wastewater treatment. Therefore, this paper reviews on the raw materials used in the synthesis of geopolymer for wastewater treatment. This would help in the development of low cost geopolymer based adsorbent that has a great potential for heavy metal adsorption, which could deliver double benefit in both waste management and wastewater treatment.