Options
Mohd Ridzuan Mohd Jamir
Preferred name
Mohd Ridzuan Mohd Jamir
Official Name
Mohd Ridzuan , Mohd Jamir
Alternative Name
Ridzuan Mohd Jamir, Mohd
M Ridzuan, M. J.
Ridzuan, M. J.M.
Mohd Jamir, Mohd Ridzuan
Jamir, Mohd Ridzuan Mohd
Main Affiliation
Scopus Author ID
36069815000
Researcher ID
H-9343-2012
Now showing
1 - 10 of 47
-
PublicationApproach to enhance the heat transfer of valve seats through thermal analysis( 2022-02-05)
;Hassan M.A.S.M. ;Ibrahim Z. ;Ishak A.A. ;Rahman A.A.The valve seat insert is a component of the engine cylinder head, whose primary function is to seal the combustion chamber and absorb the valve's heat, releasing it to the engine cylinder head. The valves experience high temperatures owing to high thermal loading and low heat absorption in the valve seat, which can potentially damage the engine. Therefore, the thermal characteristics of the valve seat must be optimised to increase the heat transmission between the valve and its seat. Here, three copper alloy valve seats, brass, beryllium copper, and bronze copper, were tested against the existing sintered iron valve seat, and their temperature maps were determined using actual engine operation conditions. The instantaneous heat transfer coefficients of the valves, seats, and engine cylinder head during the four-stroke cycle were evaluated using a one-dimensional thermal simulation analysis. The values obtained were used to assess the finite-element model using a three-dimensional thermal simulation in the Ansys software. The results show that the brass, beryllium-, and bronze-copper valve seats increased the overall heat flux by 4.46%, 4.16%, and 2.06%, respectively, compared to those for sintered iron. Thus, the results are essential to improve the thermal characteristics of the copper alloy valve seat imposed on the cylinder head. For validation, an experimental engine thermal survey and uncertainty magnification factors were used to validate the model. The results indicate that the maximum difference between the simulation and experimental values is 8.42%. Therefore, this approach offers a direct and comprehensible application for evaluating the temperature distribution, heat gradient, and heat flux of the cylinder head of air-cooled spark-ignition moped motorcycle engines using copper alloy valve seat materials at intermediate engine speeds. Furthermore, this method is applicable as a platform for the automotive industry to improve the heat transfer of the structural parts of internal combustion engines. -
PublicationStructural, morphological and thermal properties of cellulose nanofibers from napier fiber (Pennisetum purpureum)( 2020-09-01)
;Radakisnin R. ;Jawaid M. ;Sultan M.T.H.The purpose of the study is to investigate the utilisation of Napier fiber (Pennisetum purpureum) as a source for the fabrication of cellulose nanofibers (CNF). In this study, cellulose nanofibers (CNF) from Napier fiber were isolated via ball-milling assisted by acid hydrolysis. Acid hydrolysis with different molarities (1.0, 3.8 and 5.6 M) was performed efficiently facilitate cellulose fiber size reduction. The resulting CNFs were characterised through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), particle size analyser (PSA), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The FTIR results demonstrated that there were no obvious changes observed between the spectra of the CNFs with different molarities of acid hydrolysis. With 5.6 M acid hydrolysis, the XRD analysis displayed the highest degree of CNF crystallinity at 70.67%. In a thermal analysis by TGA and DTG, cellulose nanofiber with 5.6 M acid hydrolysis tended to produce cellulose nanofibers with higher thermal stability. As evidenced by the structural morphologies, a fibrous network nanostructure was obtained under TEM and AFM analysis, while a compact structure was observed under FESEM analysis. In conclusion, the isolated CNFs from Napier-derived cellulose are expected to yield potential to be used as a suitable source for nanocomposite production in various applications, including pharmaceutical, food packaging and biomedical fields. -
PublicationThe Effect of the Amylose/Amylopectin Contents of Starch on Porosity and Dielectric Properties of the Porous Hydroxyapatite/Starch Composites( 2020-07-09)
;Chong You B. ;Abu Bakar S.This study aims to determine the effect of the amylose/amylopectin contents of starch on the porosity and dielectric properties of porous hydroxyapatite/starch composites. The porous hydroxyapatite/starch composites were prepared by utilizing the starches (rice, corn and potato starch) via gelatinization and retrogradation process. The complex permittivity of the porous hydroxyapatite/starch composites were evaluated in the frequency range of 12.4-18.0 GHz. The porous composites were exhibited the higher average porosity by using the starch with higher amylopectin content. The highly porous hydroxyapatite/starch composites with higher amylopectin content show the significant fluctuation peaks (at 13.8 and 16.6 GHz) and the higher imaginary part of the complex permittivity (ϵ′′) at higher frequency in the dielectric spectrum, respectively. The real (ϵ′) and imaginary part (ϵ′′) of the complex permittivity of the porous composites could be enhanced by increasing the average porosity and the amylopectin contents. -
PublicationThe effect of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (Palf)/carbon hybrid laminate composites( 2021-01-01)Sultan M.T.H.In this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0â—¦, 90â—¦ ] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
-
PublicationMicrowave dielectric analysis on adhesive disbond in acrylic glass (Poly (Methyl Methacrylate)) at KU-band( 2020-10-01)
;Mohd A.R. ;You K.Y. ;Khairul S.B. ;Beh C.Y.A microwave dielectric spectroscopy for detecting adhesive disbonds between acrylic glass (aka Poly (methyl methacrylate)) was discussed. The adhesive bond was developed using epoxy resin and acrylate. The level of joint disbond can be quantified using Young Modulus. In this work, the strength of bond is affected by radius of air void within adhesive bond. A high-frequency electromagnetic wave propagated through two joint acrylic glass with acrylate and epoxy adhesive using waveguide adaptor WR90 in conjunction with professional network analyser. This electromagnetic wave is reflected and transmitted at the bond interface due to mismatch impedance at adhesive bond. The output is a dielectric properties that characterizes the bond interface. The increment of Young Modulus leads to increment of dielectric constant and loss factor for epoxy resin and acrylates, respectively. -
PublicationIn vitro biodegradation, cytotoxicity, and biocompatibility of polylactic acid/napier cellulose nanofiber scaffold composites( 2022-12-31)
;Revati R.Alshahrani H.A.This study aimed to evaluate the bioactivities and biocompatibilities of porous polylactic acid (PLA) reinforced with cellulose nanofiber (CNF) scaffolds. The in vitro degradation behaviors of the porous PLA/CNF scaffolds were systematically measured for up to 8 weeks in a phosphate-buffered saline medium at 37 °C. The reinforcement of CNF resisted the biodegradation of the scaffolds. The in vitro cytotoxicity and biocompatibility of the scaffolds were determined using the Beas2B American Type Culture Collection cells. The 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity and proliferation tests showed that the scaffolds were non-toxic, and epithelial cells grew well on the scaffold after 7 days of culture, whereas the percentage of cell proliferation on the PLA/CNF15 scaffold was the largest, 130 %. A scratch wound-healing assay was performed to evaluate the suitability of the scaffolds for cell migration. The results demonstrated that the scaffolds exhibited good cell migration towards nearly complete wound closure. -
PublicationThermal behaviour of graphene nanoplatelets and multiwalled carbon nanotubes filled-glass fibre-reinforced epoxy composites( 2024-01-01)
;Ahmad M.A.A. ;Sapuan S.M. ;Ismail M.S.The effects of thermal behaviour on graphene nanoplatelets (GP) and multiwalled carbon nanotube (CN) nanofillers of glass fibre (GL)-reinforced epoxy composites were investigated. The paper aims at evaluating, through a single and hybrid carbon-based nanofiller on the thermal stability, mechanical properties, electromechanical properties at elevated temperature, and morphologies of the composites. The nanofillers were dispersed using a mechanical stirrer, Thinky mixer, and ultrasonic probe. Hand lay-up and vacuum bagging techniques were used in the manufacturing of composites. Real-time self-monitoring of the structural damage to the specimens under tensile and flexural tests was performed through electromechanical measurements. Using the GP–CN hybrid in the composite improved the adhesion between the hybrid nanofillers and matrix. The thermal properties of GP–GL, CN–GL, and GP–CN–GL hybrid composites increased with the hybrid nanofiller addition. Mechanical testing at elevated temperatures revealed a higher rate of strength degradation for the 1.5-mass% GP–CN–GL hybrid composite than for a single nanofiller composite. The GP–CN–GL hybrid composites exhibited a more pronounced nonlinear behaviour and lower resistance. -
PublicationEffect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites( 2017-11-07)The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.
-
PublicationPhysical, Thermal Transport, and Compressive Properties of Epoxy Composite Filled with Graphitic-and Ceramic-Based Thermally Conductive Nanofillers( 2022-03-01)
;Samsudin S.S. ;Osman A.F. ;Jaafar M.Alshahrani H.A.Epoxy polymer composites embedded with thermally conductive nanofillers play an important role in the thermal management of polymer microelectronic packages, since they can provide thermal conduction properties with electrically insulating properties. An epoxy composite system filled with graphitic-based fillers; multi-walled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs) and ceramic-based filler; silicon carbide nanoparticles (SiCs) was investigated as a form of thermal-effective reinforcement for epoxy matrices. The epoxy composites were fabricated using a simple fabrication method, which included ultrasonication and planetary centrifugal mixing. The effect of graphite-based and ceramic-based fillers on the thermal conductivity was measured by the transient plane source method, while the glass transition temperature of the fully cured samples was studied by differential scanning calorimetry. Thermal gravimetric analysis was adopted to study the thermal stability of the samples, and the compressive properties of different filler loadings (1–5 vol.%) were also discussed. The glass temperatures and thermal stabilities of the epoxy system were increased when incorporated with the graphite-and ceramic-based fillers. These results can be correlated with the thermal conductivity of the samples, which was found to increase with the increase in the filler loadings, except for the epoxy/SiCs composites. The thermal conductivity of the composites increased to 0.4 W/mK with 5 vol.% of MWCNTs, which is a 100% improvement over pure epoxy. The GNPs, SiCs, and MWCNTs showed uniform dispersion in the epoxy matrix and well-established thermally conductive pathways. -
PublicationDerivation and validation of heat transfer model for Spark-Ignition engine cylinder head( 2023-05-05)
;Hassan M.A.S.M. ;Ibrahim Z. ;Ishak A.A.The valve train is located in the engine cylinder head, which has various operational heat transfer mechanisms to accommodate the combustion process. Most heat transfer studies in this area have only addressed medium-to high-power vehicles at a single running speed. In this study, a model of an air-cooled underbone motorcycle valve, valve seat, and engine cylinder head was tested to determine the thermal characteristics using actual engine operating conditions at low, medium, and high engine speeds. One-dimensional thermal simulation analyses were conducted to obtain the instantaneous heat-transfer coefficients of an actual engine. The average thermal value was determined as the boundary condition in the three-dimensional thermal analysis. A three-dimensional model was prepared using the ANSYS commercial computational fluid dynamics software package. The results show that as the engine speed increases, so does the thermal load toward the component in the engine cylinder head. The strongest temperature regions were concentrated around the combustion face. The exhaust valve held most of the heat, with the valve neck recording the highest temperature. For the intake valve, the combustion face registered the majority of the heat. The heat flux intensity was gathered in the contact surface area between the valve and its seat, between the valve stem and guide, and between the stem guide and tip section. A thermal survey was used to validate the three modelling results for two separate engine datasets. The cumulative relative errors for intake and exhaust valve seats for low engine speeds were 3.73% and 0.17%, respectively. The intake and exhaust valve seats had cumulative relative errors of 4.12% and 0.70%, respectively, at intermediate speeds. This methodology provides valuable information for analysing the heat characterisation of air-cooled engines. It can also be a useful blueprint for the automotive industry and other researchers involved in thermal measurements.