Options
Mohd Nazrin Md Isa
Preferred name
Mohd Nazrin Md Isa
Official Name
Mohd Nazrin , Md Isa
Alternative Name
Md Isa, Mohd N.
Isa, M. Nazrin Md
Md Isa, M. N.
Isa, Nazrin
Isa, M. Nazrin M.
Main Affiliation
Scopus Author ID
56426995200
Researcher ID
N-1250-2017
Now showing
1 - 10 of 43
-
PublicationA novel double Co-Transformation for a simple and memory efficient logarithmic number system( 2020)
;M. S. S. M. BasirTo date, co-transformation architecture is typically used in resolving the singularity issue in the logarithmic number system (LNS). The co-transformation was first introduced by Coleman, by using a rule of sign(r 1 ) ≠sign(r 2 ) which translate the singularity into an argument that can be stored in two identical look-up tables (LUTs) with size of 2k. Recently, a portable 32-bit chipset preferred a small LUT, hitherto a co-transformation architecture is rearranged. This paper presents a novel double co-transformation, by means of first-order co-transformation architecture that covers -0.5 <; r <; 0 region is extended to r > -1 to replace the triumvirate F, D and E tables occupy by the interpolator. The accuracy settings at the co-transformation is compromised with the worst case error of 0.5 ulp. The outcome revealed a double co-transformation with Lagrange interpolator shows a decline in the total bit by 13% compared to European Logarithmic Microprocessor (ELM). With a simple architecture, the proposed double co-transformation is a promise for a fast LNS system. -
PublicationAn implementation of Short Time Fourier Transform for Harmonic Signal Detection( 2021-03-01)
;Basir M.S.S.M. ;Yusof K.H. ;Katim N.I.A.Power electronic components has the tendency to induce a non-linear signal called harmonic distortion. Without proper monitoring tools, harmonic distortion can harm sensitive electronic equipment, and in worse case scenarios, may lead to unreliable operation of controller and misalignment of motoring unit. This matter can be compromised by taking safety precaution, by identifying the level of harmonic rise in the electrical system. This paper presents analysis on different characteristics of harmonic signal using frequency distribution technique, namely Fourier transform (FT), and proposal of time-frequency distribution (TFD) technique, which is a short time Fourier transform (STFT). The novelty of utilizing STFT is the analyzed signal is represented in both time and frequency marginals, hence providing extra information of the spectral over the time. Simulation was carried out using MATLAB, by means the results consisting of the magnitude of multi-frequency components signal were represented in time-frequency representation (TFR). From the TFR, parameters such as instantaneous RMS fundamental voltage, V1RMS(t), instantaneous RMS voltage, VRMS(t), instantaneous total waveform distortion, VTWD(t), instantaneous total harmonic distortion, VTHD(t) and instantaneous total nonharmonic distortion, VTnHD(t) had been extracted. The performance of different harmonic signals such as normal, single-level harmonic, multi-level harmonic, short duration harmonic and interharmonic had been analyzed. The performance based on absolute percentage error (APE) index indicated average of 93% of correctness using 256 window length in STFT measurement. -
PublicationEnhancing fractal image compression speed using peer adjacent mapping with sum of absolute difference for computed radiography imagesThe encoding phase in full-search fractal image compression (FIC) is time-intensive as a sequential search must be performed through a massive domain pool to find the best-matched domain for each block of ranges. In this paper, a peer adjacent with the sum of absolute difference (SAD) mapping has been suggested to enhance the FIC speed while retaining the reconstructed image quality. The SAD similarity measure applied in searching the most matching domain between domain pool for a range before transformation in order to shorten the mapping process. Therefore, instead of performing a complete search in the next level, one requires to only search a close neighbourhood of the region computed from the previous search. The efficiency of the proposed method is evaluated using standard test image, SMPTE test pattern and standard computed radiography digital images from JSRT database, from which the peak signal-to-noise ratio (PSNR), compression time and compression ratio are calculated. The experimental results validate the effectiveness of the proposed method. © 2020 Author(s).
-
PublicationFactors that affect soil electrical conductivity (EC) based system for smart farming application( 2020-01-08)
;Othaman N.N.C.Hui C.K.This paper presents the design and implementation of a soil electrical conductivity (EC) based system for a smart farming application using Arduino MEGA microcontroller. This work aims to establish the co-relationship between the measured EC values from the developed system with the amount of required NPK (nitrogen, phosphorus, potassium) fertilizer. Experimental results show that the soil EC is directly proportional to the nutrient concentration and inversely proportional to the depth of the soil. Besides, the soil EC values reflect the soil salinity (salt concentration) where, the higher the EC value, the higher the salt concentration in the soil and vice versa. It is also noted that the EC values and the total dissolved solids (TDS) could be used to estimate the amount of required NPK fertilizer. -
PublicationLess memory and high accuracy logarithmic number system architecture for arithmetic operations( 2021-09-01)Interpolation is another important procedure for logarithmic number system (LNS) addition and subtraction. As a medium of approximation, the interpolation procedure has an urgent need to be enhanced to increase the accuracy of the operation results. Previously, most of the interpolation procedures utilized the first degree interpolators with special error correction procedure which aim to eliminate additional embedded multiplications. However, the interpolation procedure for this research was elevated up to a second degree interpolation. Proper design process, investigation, and analysis were done for these interpolation configurations in positive region by standardizing the same co-transformation procedure, which is the extended range, second order co-transformation. Newton divided differences turned out to be the best interpolator for second degree implementation of LNS addition and subtraction, with the best-achieved BTFP rate of +0.4514 and reduction of memory consumption compared to the same arithmetic used in european logarithmic microprocessor (ELM) up to 51%.
-
PublicationDevelopment of Soil Electrical Conductivity (EC) Sensing System in Paddy Field( 2021-03-01)
;Othaman N.N.C.The amount of fertilisers affects electrical conductivity (EC), and it is one of the major causes of the paddy yield decrease. The overuse of fertilisers can lead to environmental pollution and contamination. This study designed to develop soil electrical conductivity (EC) sensing system in the paddy field using the smart farming application. In this work, the study conducted in Kampung Ladang, Kuala Perlis, and the soil samples collected from a random location at two different depths from the paddy field. The EC value for the developed system was near the calibration solutions (12880µS and 150000µS) and directly proportional to the temperature. From the laboratory soil results, the EC values of the soils were higher with fertiliser. However, the EC values for 0-10cm soil depth were higher than 10-20cm soil depth. The soil EC is inversely proportional to the depth of soil and directly proportional to the amount of nutrients. It observed that the soil EC is linearly related to the amount of nutrients and temperature. The EC value decreases with the increase of soil depth displays a low amount of salts in the deep soil, while, increases with the increase of temperature indicates high current flow. -
PublicationBiological sequence alignments: A review of hardware accelerators and a new PE computing strategy( 2014)Khaled BenkridOne of the most challenging tasks in sequence alignment is its repetitive and time-consuming alignment matrix computations. In addition, performing sequence alignment in hardware, i.e. FPGA requires more hardware resources as the number of processing elements is replicated to increase performance throughput. This paper first reviews the existing FPGA-based biological sequence alignment core architectures and then proposed an efficient scheduling strategy, the so-called overlap computation and configuration (OCC) towards realizing optimized biological sequence alignment core architecture targeting for pairwise sequence alignment. In this research work, double buffering-based core architecture have been proposed and implemented on Xilinx Virtex-5 FPGA. Results have shown that this approach gained more than 10K times speed-up as compared to the GPP solution.
-
PublicationFace Recognition and Identification using Deep Learning Approach( 2021)
;KH TeohMuhammad Sufyan Safwan BasirHuman face is the significant characteristic to identify a person. Everyone has their own unique face even for twins. Thus, a face recognition and identification are required to distinguish each other. A face recognition system is the verification system to find a person’s identity through biometric method. Face recognition has become a popular method nowadays in many applications such as phone unlock system, criminal identification and even home security system. This system is more secure as it does not need any dependencies such as key and card but only facial image is needed. Generally, human recognition system involves 2 phases which are face detection and face identification. This paper describes the concept on how to design and develop a face recognition system through deep learning using OpenCV in python. Deep learning is an approach to perform the face recognition and seems to be an adequate method to carry out face recognition due to its high accuracy. Experimental results are provided to demonstrate the accuracy of the proposed face recognition system. -
PublicationDesign of 5 V DC to 20 V DC switching regulator for power supply module( 2017)
;Nor Afiqah AzmiM. A. ZulkifeliThis paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module. © 2017 Author(s). -
PublicationImage data compression using discrete cosine transform technique for wireless transmission( 2021-12)
;Mona H. HaronTelemetry data transfer over long-range wireless network for internet of things-based applications presently gaining popularity and this trend continuous in the era of Industrial Revolution (IR 4.0). However, transmitting larger amount of data such as images is a challenging task and requires further attention and research. Moreover, transmitting data over open agricultural area requires this capability to collect field data for further research and analysis. This work aims to propose a suitable image compression technique and recommends for the best compression ratio as to address the aforementioned issue. Discrete Cosine Transform (DCT) is a well-known lossy-based image compression technique, which has been explored along with another compression algorithm known as Fast Fourier Transform (FFT). Comparison between the two most widely used compression algorithms was analyzed and discussed. In this paper, golden apple snail images are acquired from various databases which include the mature snail, adult female laying eggs, snail pink eggs on stem and snails in the water. A MATLAB code is written to implement both algorithms with input images from the database is tested on the developed algorithm. Simulation results have shown that the input images can be compressed with a different value of compression ratio (CR) ranging from 3.00 to 50.00. Other than that, it is noted that the quality of the compression ratio is 49.04 with Mean Square Error (MSE) of 172.72 and Peak Signal to Noise Ratio (PSNR) of 25.75.