Now showing 1 - 5 of 5
  • Publication
    Fabrication of silicon nanowire sensors for highly sensitive pH and DNA hybridization detection
    ( 2022)
    Siti Fatimah Abd Rahman
    ;
    Nor Azah Yusof
    ;
    ; ; ;
    Mohd Nizar Hamidon
    A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting the changes in the electrical current of the ssDNA-functionalized SiNW sensor, interacting with the targeted ssDNA in a label-free way. The developed biosensor shows selectivity for the complementary target ssDNA with linear detection ranging from 1.0 × 10−12 M to 1.0 × 10−7 M and an attained detection limit of 4.131 × 10−13 M. This indicates that the use of SiNW devices is a promising approach for the applications of ion detection and biomolecules sensing and could serve as a novel biosensor for future biomedical diagnosis.
  • Publication
    Silicon Self-Switching Diode (SSD) as a Full-Wave Bridge Rectifier in 5G networks frequencies
    The rapid growth of wireless technology has improved the network’s technology from 4G to 5G, with sub-6 GHz being the centre of attention as the primary communication spectrum band. To effectively benefit this exclusive network, the improvement in the mm-wave detection of this range is crucial. In this work, a silicon self-switching device (SSD) based full-wave bridge rectifier was proposed as a candidate for a usable RF-DC converter in this frequency range. SSD has a similar operation to a conventional pn junction diode, but with advantages in fabrication simplicity where it does not require doping and junctions. The optimized structure of the SSD was cascaded and arranged to create a functional full-wave bridge rectifier with a quadratic relationship between the input voltage and outputs current. AC transient analysis and theoretical calculation performed on the full-wave rectifier shows an estimated cut-off frequency at ~12 GHz, with calculated responsivity and noise equivalent power of 1956.72 V/W and 2.3753 pW/Hz1/2, respectively. These results show the capability of silicon SSD to function as a full-wave bridge rectifier and is a potential candidate for RF-DC conversion in the targeted 5G frequency band and can be exploited for future energy harvesting application.
  • Publication
    Hybrid statistical and numerical analysis in structural optimization of silicon-based RF detector in 5G network
    ( 2022-01-21)
    Tan Yi Liang
    ;
    ; ; ; ; ;
    Arun Kumar Singh
    ;
    Sharizal Ahmad Sobri
    In this study, a hybrid statistical analysis (Taguchi method supported by analysis of variance (ANOVA) and regression analysis) and numerical analysis (utilizing a Silvaco device simulator) was implemented to optimize the structural parameters of silicon-on-insulator (SOI)-based self-switching diodes (SSDs) to achieve a high responsivity value as a radio frequency (RF) detector. Statistical calculation was applied to study the relationship between the control factors and the output performance of an RF detector in terms of the peak curvature coefficient value and its corresponding bias voltage. Subsequently, a series of numerical simulations were performed based on Taguchi’s experimental design. The optimization results indicated an optimized curvature coefficient and voltage peak of 26.4260 V−1 and 0.05 V, respectively. The alternating current transient analysis from 3 to 10 GHz showed the highest mean current at 5 GHz and a cut-off frequency of approximately 6.50 GHz, indicating a prominent ability to function as an RF detector at 5G related frequencies.
  • Publication
    Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube
    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO2 and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO2 and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO2 in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO2 and MWCNTs to SiCNTs was achieved for blend of SiO2 and MWCNTs in molar ratio of 1:3.