Options
Mohd Khairuddin Md Arshad
Preferred name
Mohd Khairuddin Md Arshad
Official Name
Mohd Khairuddin , Md Arshad
Alternative Name
Md. Arshad, M. K.
Arshad, Mohd K.M.
Arshad, M. K.M.
Khairuddin Md Arshad, Mohd
Arshad, M. K.Md
Main Affiliation
Scopus Author ID
57211870224
Researcher ID
L-5830-2013
Now showing
1 - 10 of 74
-
PublicationImpedimetric cardiac biomarker determination in serum mediated by epoxy and hydroxyl of reduced graphene oxide on gold array microelectrodes( 2021-08-01)
;Ibau C.Anbu P.A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1–500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (−NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL−1 and the lowest antigen concentration measured was at 10 ag mL−1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL−1–100 ng mL−1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD < 5%. Hence, the demonstrated S-4 strategy is highly recommended for other downstream biosensors applications. Graphical abstract: [Figure not available: see fulltext.]. -
PublicationNumerical Simulation and Parameters Variation of Silicon Based Self-Switching Diode (SSD) and the Effect to the Physical and Electrical Properties( 2020-12-14)
;Tan Y.L. ;Zakaria N.F.Rahim A.F.A.Investigation of SOI based self-switching diode (SSD) by numerical simulation for RF -DC harvesting application is presented. The rectification performance of the SSD is based on the curvature coefficient, ? and current responsivity, ß which are closely related to the I-V characteristic of a non-linear device. In this work, the structural parameters are varied to observe the electrical and physical characteristics with the aid of ATLAS Silvaco simulation tools. The rectification performance in each variation is then compared, with the highest value of ? and ß observed at 25.20 V and 12.60 V, respectively. By identifying and understanding these control factors and their effects, distinctive variations of the structural parameters by using a more deliberate optimization method can be proposed for further improvement on the rectification performance. -
PublicationDevelopment of a Love-Wave Biosensor Based on an Analytical Model( 2022-02-01)
;Sarry F. ;Bonhomme J. ;Oudich M. ;Chavez P.A.S. ;Beyssen D. ;Elmazria O.Charette P.G.The present work deals with the development of a Love-wave biosensor for the diagnosis of the modification of cell viscosity. The relevant device performance such as insertion loss, attenuation, phase velocity, and sensitivity needs to be analysed as a function of the device structure and also regarding the effect of the liquid loading. In this study, we used an analytical model based on the equation of motions for a Love wave propagating in a three-layer structure. We show that the effect of the viscous coupling leads to insertion losses and a phase shift that impact the acoustic ratio. A comparison between experimental and theoretical results showed a good agreement between the behaviours as it was observed for the phase shift vs. the insertion loss with a limited difference in values (3.11/3.09—experimental/simulation for the sensitivity to the viscosity for different insertion losses) due to the assumptions made on the model used. -
PublicationDistinguishing normal and aggregated alpha-synuclein interaction on gold nanorod incorporated zinc oxide nanocomposite by electrochemical technique( 2021-02-28)
;Adam H.Misfolding and accumulation of the protein alpha synuclein in the brain cells characterize Parkinson's disease (PD). Electrochemical based aluminum interdigitated electrodes (ALIDEs) was fabricated by using conventional photolithography method and modified the surfaces with zinc oxide and gold nanorod by using spin coating method for the analysis of PD protein biomarker. The device surface modified with gold nanorod of 25 nm diameter was used. The bare devices and the surface modified devices were characterized by Scanning Electron Microscope, 3D-Profilometer, Atomic Force Microscope and high-power microscope. The above measurement was also performed to measure the interaction of antibody with aggregated alpha-synuclein for normal, aggregated and aggregated alpha synuclein in human serum and distinguished against 3 control proteins (PARK1, DJ-1 and Factor IX). The detection limit for normal alpha synuclein was 1 f. with the sensitivity of 1 f. on a linear regression (R2 = 0.9759). The detection limit for aggregated alpha synuclein was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9797). Also, the detection limit of aggregated alpha synuclein in serum was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9739). These results however indicate that, serum has only minimal amount of alpha synuclein. -
PublicationGlycosylated biomarker sensors: advancements in prostate cancer diagnosis( 2021-09-28)
;Siti Fatimah Abd Rahman ;Sarry F.Ibau C.Prostate cancer is currently diagnosed using the conventional gold standard methods using prostate-specific antigen (PSA) as the selective biomarker. However, lack of precision in PSA screening has resulted in needless biopsies and delays the treatment of potentially fatal prostate cancer. Thus, identification of glycans as novel biomarkers for the early detection of prostate cancer has attracted considerable attention due to their reliable diagnostic platform compared with the current PSA systems. Therefore, biosensing technologies that provide point-of-care diagnostics have demonstrated the ability to detect various analytes, including glycosylated micro- and macro-molecules, thereby enabling versatile detection methodologies. This highlight article discusses recent advances in the biosensor-based detection of prostate cancer glycan biomarkers and the innovative strategies for the conjugation of nanomaterials adapted to biosensing platforms. Finally, the article is concluded with prospects and challenges of prostate cancer biosensors and recommendations to overcome the issues associated with prostate cancer diagnosis. -
PublicationFormation of polypropylene nanocomposite joint using silicon carbide nanowhiskers as novel susceptor for microwave welding( 2023-05-01)
;Foong P.Y. ;Lim B.Y. ;Teh P.L. ;Low F.W.Up to present, no study has reported on the use of silicon carbide nanomaterials (SiCNMs) as susceptor for microwave welding of thermoplastics. Therefore, in this study, silicon carbide nanowhiskers (SiCNWs) was attempted as the microwave susceptor for the microwave welding of polypropylene (PP). It was observed that SiCNWs are capable of absorbing microwave and converting them into heat, leading to a sharp increase in temperature until it reaches the melting point of PP substrates. The microwave welded joint is formed after the molten PP at the interface between PP substrates is cooled under pressure. The effect of microwave heating duration and solid loading of SiCNWs suspension was studied and reported. The formation mechanism of SiCNWs reinforced PP welded joint was proposed in this study. With these remarkable advantages of microwave welding and enhanced mechanical properties of the welded joint, it is believed that this study can provide a new insight into welding of thermoplastic and material processing through short-term microwave heating. -
PublicationTop-Down Fabrication of Silicon Nanogap for Detection of Dengue Virus (DENV)( 2020-01-01)
;Zulkiffli M.N.F. ;Zailan Z. ;Isa N.A.M. ;Ibau C. ;Zainol Abidin W.’.B. ;Azlan A.S.In this work, a highly sensitive Silicon nanogap biosensor was demonstrated for Deoxyribonucleic acid (DNA) detection related to Dengue virus (DENV). The Silicon nanogap was fabricated using the top–down conventional lithography approach followed by reactive ion etching (RIE) to further thin down the nanogap. The inspections of Silicon nanogap structures were carried out using the scanning electron microscope (SEM) and atomic force microscopy (AFM). The surface of the fabricated Silicon nanogap was functionalized by means of a three-steps procedure involving surface modification, immobilization and hybridization. This procedure acts as a liquid gate control to establish the electrical detection targets of the dengue virus. The electrical detection is based on the changes in the current of the sensor due to the accumulation of the negative charges by the immobilized probe and hybridized target Deoxyribonucleic acid. The limit of detection (LOD) achieved was recorded at 10 pM with a 207 nm of fabricated Silicon nanogap and its sensitivity at 1.5 × 10−10 AM−1. The demonstrated results show that the Silicon nanogap has the excellent properties for detection of dengue virus as biosensor devices. -
PublicationEffect of back gate biasing on silicon nanowire field effect transistor( 2021-05-03)
;Wan Amirah Basyarah Z.A. ;Md Nor M.N. ;Azlan A.S.Ibau C.This work presents an experimental analysis of the substrate bias influence on the operation of Silicon Nanowire Field Effect Transistor (SiNW-FET). The device analysis has been performed by using atomic force microscope (AFM) and scanning electron microscope (SEM) to obtain the surface morphological characterization. Then, the electrical characterization was measured over a linear DC sweep, range from -1.5 V to 0.6 V with a step voltage of 0.01V and the variation on the substrate bias applied to the sample from -1V to 0V. As a result, the back gate was found to influence the conductivity of the nanowire with a higher than 0.79 V gate voltage to be applied. The device demonstrated a good behavior of p-type silicon nanowire field effect transistor and capable to operate as a biosensing device. -
PublicationEffect of Microwave Power and Clamping Pressure on the Microwave Welding of Polypropylene Using Silicon Carbide Nanowhiskers as Microwave Susceptor( 2022-01-01)
;Foong P.Y. ;Lim B.Y. ;Teh P.L. ;Low F.W. ;Mahalingam S. ;Manap A.Due to their excellent dielectric properties and the rapid response to microwave irradiation, silicon carbide nanowhiskers (SiCNWs) were employed as microwave susceptor in this study to absorb microwave and locally melt the surrounding polypropylene (PP) substrates for the joining of PP substrates. Complete welded joint is formed after the melted PP was cooled and resolidified. Other than microwave susceptor, SiCNWs also acted as the nanofillers in strengthening the welded joint through the formation of SiCNWs reinforced PP nanocomposite at the interface of PP substrates. Besides, the effect of microwave power on the microwave welding of PP substrates using SiCNWs as susceptor was studied and reported. It was found that the tensile strength and modulus of elasticity of the welded joint improved as microwave power increased. However, it deteriorates the flexibility of the welded joint as high stiffness SiCNWs were incorporated deeper into the PP matrix which restricted the PP chain mobility. Aside from microwave power, clamping pressure is also critical in determining the mechanical properties of a welded joint. When compared to unclamped welded joint, the tensile strength, modulus of elasticity and flexibility of welded joint subjected to clamping pressure improved drastically. Moreover, the tensile strength of welded joint increased when the clamping pressure was increased from P1 to P3, but decreased when the clamping pressure was further increased to P4 due to the occurrence of flashing at welded joint. The formation mechanism of SiCNWs reinforced PP welded joint was also proposed in this study. Compared to conventional welding, this welding process is easy, straightforward and is able to produce welded joint with outstanding mechanical properties via precise controlling of the processing parameters. Thus, microwave welding is thought to offer an option for the joining of thermoplastics and other applications. -
PublicationFabrication and Characterizations of Poly-Si Nanowire Biosensor using Conventional Photolithography Technique for Detection of Dengue Virus DNA Type 2 (DENV-2)( 2020-07-09)
;Shazereen Azlan A. ;Amirah Basyarah W. ;Ibau C.Nowadays, nanotechnology has become a vast expanding application which can be used all across the science field such as chemistry, biology, physic, material science and engineering. In this paper, a poly-Si nanowire biosensor was fabricated by using the conventional photolithography technique. In addition, this technique is used to define the initial poly-Si with the dimension of 1 μm. After the conventional photolithography process, the photoresist undergone the development using resist developer and etched with reactive ion etching (RIE). Meanwhile, for the electrical part, it was observable that there was an increase in current when the nanowire has been hybridized with Dengue DNA type-2 (DENV-2) ranging from 10 fM - 10 μM. The morphology of the poly-Si nanowire was characterized by optical microscopy whilst electrically characterized by measuring the two-terminal current-voltage (I-V) characteristic.